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Chapter 1

Introduction

1.1 Motivation

Chemically reactive flows play a key role in a broad range of technical combustion
applications. The mathematical modeling of those reactive flows is very complex
because they include an interplay between flow (convection), diffusive transport,
and chemical combustion reaction processes. The simulation of these processes –
based on a detailed combustion mechanism involving a large number of chemical
species and reactions – is up to now difficult despite growing computing power.
However, detailed knowledge and numerical simulations of chemical combustion
– which plays a major role for the use of energy (amongst others) in today’s world
– are necessary and call for complexity reduction and multi-scale approaches.

A common feature of the chemical kinetics model equations (Ordinary Differen-
tial Equations (ODEs) ċ(t) = f

(
c(t)
)
, c(t) ∈ Rn) corresponding to a complex

model (chemical reaction mechanism) is the occurence of a large number of differ-
ent time scales. In order to simplify these stiff model equations, model reduction
techniques have to be applied for obtaining a reduced model. Many model reduc-
tion methods exploit this time scale separation into fast and slow modes with the
aim of approximating the system dynamics with a dimension-reduced model via
eliminating the fast modes by enslaving them to the slow ones. Therefore, most
model reduction techniques make use of the occurence within the phase space
of a Slow Invariant attracting Manifold (SIM), which attracts nearby orbits and
possesses a lower dimensionality than the phase space. These SIMs are charac-
terized by their properties, which are invariance and attractivity. The dynamics
on such SIMs govern the long term evolution of the full model. Nearby orbits
decompose into a fast component that contracts toward the SIM and a slow com-
ponent obeying the system dynamics on the SIM. Thus, the aim of these model
reduction approaches is the identification and approximation of such SIMs.

1



2 1 Introduction

These slow manifolds are parameterized by so-called reaction progress variables,
which are typically slow variables (i.e. variables, that represent the slow modes
of the system). For the computation of SIMs a species reconstruction technique
is used in this work (not later than here it has to be mentioned, that SIMs are
present in the phase space of the dynamical systems considered in this work).
Species reconstruction represents a function mapping such reaction progress vari-
ables onto the full species composition by determining a point on the SIM. In
this sense, the fast variables (i.e. variables, that represent the fast modes of the
system) become slaved to the reaction progress variables.

1.2 Different Model Reduction Methods

Model reduction methods for ODE modeling chemical kinetics have been de-
veloped for about one hundred years. Most methods make use of the occurence
within the phase space of a SIM which attracts nearby orbits and possesses a lower
dimensionality than the phase space. The high-dimensional dynamical systems,
which describe the corresponding processes, often involve multiple time scales
and because of this stiffness, many model reduction methods assume singularly
perturbed systems for analysis of the technique with a singular perturbation pa-
rameter measuring time scale separation.

Five model reduction methods are exemplarily mentioned here. First, two ba-
sic approaches are listed followed by three modern model reduction methods
developed during the last ten years. The three modern approaches are chosen
according to their close relation to the here presented model reduction method.

Among the first model reduction methods in chemical kinetics have been the
Quasi Steady-State Assumption (QSSA) [5, 6, 7] and the Partial Equilibrium As-
sumption (PEA) [30]. In the QSSA approach certain species are assumed to be
in steady-state whereas in the PEA approach certain reactions are assumed to
be in equilibrium.

The right hand side of some of the differential equations describing the chemical
mechanism is set to zero in the QSSA method. Example:

d[S1]

dt
= −k12[S1]

d[S2]

dt
= k12[S1]− k23[S2] = 0

d[S3]

dt
= k23[S2].
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This means that the rates of change of some species depend on the rates of change
of the other species:

[S2] =
k12

k23

[S1].

Thus, certain ODEs can be replaced by algebraic equations such that the original
ODE system changes to a differential algebraic equation system:

d[S1]

dt
= −k12[S1]

[S2] =
k12

k23

[S1]

d[S3]

dt
= k23[S2].

Finally, the number of differential variables has been reduced (from [S1], [S2], [S3]
to [S1], [S3]).

In contrast to the QSSA approach where the major assumption is on species, in
the PEA approach the major assumption is on reactions. The latter assumes fast
elementary reaction steps to be relaxed to partial equilibrium immediately.

Both methods require a detailed knowledge of the mechanism in order to decide
for which species a quasi-stationarity or for which reactions a partial equilibrium
can be assumed. Due to their conceptual simplicity both the QSSA and the PEA
method are still used nowadays although more sophisticated model reduction
methods have been developed. Examples of use for the QSSA method and the
PEA method can be found in [32, 41].

Another model reduction technique called Invariant Constrained equilibrium Edge
PreImage Curve (ICE-PIC) has been introduced by Ren et al. in 2006 [34]. This
method is based on an ICE manifold which is the union of all reaction trajectories
emanating from points lying in the edge of a constrained equilibrium manifold
(for more details see [34]). As the ICE manifold is constructed from reaction
trajectories it is invariant. Based on this invariant constrained equilibrium edge
manifold a species reconstruction can be done locally which means without hav-
ing to generate the whole manifold in advance.

In [15, 44] an iterative model reduction method is presented called Zero Derivative
Principle (ZDP). In analogy to the model reduction method presented in this
work the ZDP makes use of splitting up the ODE system ċ = f(c), c(t) ∈ Rn

into

ċrpv = fa(crpv, cfree), crpv(t) ∈ Rns

ċfree = fb(crpv, cfree), cfree(t) ∈ Rnf



4 1 Introduction

in a way that the variables crpv parameterize the slow manifold. Furthermore, it
holds that nf + ns = n. The initial conditions crpv(0) = c0

rpv are only specified for
the reaction progress variables crpv. Thus, the slow manifold is assumed to be
locally given by the graph of a function cfree = cfree(crpv) for which an appropriate
solution cmfree(crpv) is given by the (m+ 1)−st derivative principle

dm+1cfree

dtm+1
= 0. (1.1)

In contrast to the method presented in this work (where non-local information is
used), (1.1) is a local condition (i.e. condition (1.1) is applied at a single point
of time). Roughly spoken, differentiation ‘amplifies’ rapidly varying components
more than slowly varying components and this is why this method can be used
to identify points near the slow manifold (condition (1.1) seeks a region where
the fast components are small). The motivation why the application of this
condition leads to an m−th order approximation to the slow manifold can be
found in singular perturbation expansion theory. Therefore it is assumed that the
ODE system can be expressed in some other variables so that it can be written
in a singular perturbation form

εċf = f1 (cf, cs; ε) , cf(t) ∈ Rnf

ċs = f2 (cf, cs; ε) , cs(t) ∈ Rns .

With this formulation the derivative principle (1.1) reads as

dm+1cf
dtm+1

(
cf, c

0
s

)
= 0.

Since this condition consists of nf nonlinear algebraic equations, the solution
cmf
(
c0
s

)
cannot be computed explicitly. Thus, a numerical approximation cm,#f of

cmf
(
c0
s

)
has to be used. This cm,#f is the last member of the sequence{

c
(r+1)
f ≡ Fm

(
c

(r)
f

)
| r = 1, 2, . . .

}
with

Fm : Rnf → Rnf , Fm(cf) = cf − (−H)m+1

(
dm+1cf
dtm+1

)(
cf, c

0
s

)
being the m−th iterative algorithm (H is an arbitrary positive number). The
iteration procedure termines when ‖c(r+1)

f − c(r)
f ‖ < TOLm for a tolerance TOLm

and r > 1. In [44] it is proved that the m−th iterative algorithm containing an
analytical formula for the (m + 1)−st derivative has a fixed point cf = hm

(
c0
s

)
which coincides with the point h

(
c0
s

)
on the slow manifold in the slow manifold

expansion in ε up to order O
(
εm+1

)
for each m = 0, 1, . . . .
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Adrover et al. [1, 2] presented a method for model reduction which comes close to
the approach presented in this work. Again this method is a local method. The
technique is based on a geometric characterization of local tangent and normal
dynamics. This description finds its justification in the theory of normal hy-
perbolicity: Roughly spoken, a normally hyperbolic manifold indicates that the
flow along the manifold is slower than the attraction/repulsion to/from it. The
method uses a ratio r > 1 of the local stretching (contraction) rates of vectors
orthogonal to the SIM compared to those tangent to the SIM. Then this ratio is
maximized. As an example a two-dimensional dynamical system is considered:

ċ = f(c) =

(
f1(c)
f2(c)

)
, c ∈ R2

possessing a one-dimensional SIM W . Then the stretching ratio r is given by

r(c) :=
ων(c)

ωτ (c)
:=
〈Jf (c) · n̂, n̂〉
〈Jf (c) · f̂ , f̂〉

, c ∈ W

with f̂ := f
‖f‖ , n̂ := n

‖n‖ , n := (f2,−f1)T , 〈·, ·〉 being the scalar product, ‖·‖ indi-
cating the norm, and Jf (c) being the Jacobian matrix of f(c). Here, ωτ denotes
the tangential stretching rate and ων the normal stretching rate. The reduction
method can be viewed as a local embedding technique: Locally projecting the
dynamics onto the most slow directions. In the n−dimensional case (n > 2) the
tangential stretching rate is still given by

ωτ (c) = 〈Jf (c) · f̂ , f̂〉

while the definition of normal stretching rates is

ων(c) = max
n̂∈NWc,‖n̂‖=1

〈Jf (c) · n̂, n̂〉

where the maximum is taken over all vectors n̂ belonging to the normal space
NWc at c. This value can be computed by the largest eigenvalue of a symmetric
matrix.
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1.3 Outline

The structure of this thesis is as follows: In Chapter 2 an overview of the the-
oretical basic knowledge is presented which is necessary for understanding and
discussing this work. As mentioned before model reduction is based on the mul-
tiple time scales present in the system. The analysis of ODE systems, that can
be split up into fast and slow variables (splitting up of the different time scales),
is performed by means of the theory of singular perturbed systems. Additionally,
a few aspects of the theory of generic dynamical systems are stated. Subsequent
subsection deals with chemical reaction kinetics. Here it is explained how to
transform the chemical reaction mechanism into an ODE system. The approach
for model reduction in chemical kinetics analyzed in this work is the formulation
of an optimization problem which has to be solved. Therefore important results
from the theory of optimization are presented as a last part of the theoretical
aspects.

In addition, in Section 2.2 the numerical background is described. First, an inte-
rior point method is presented used in the optimization software package IPOPT
and afterwards a collocation method is shown which is used for discretization of
the ODE system. Additionally, it is presented how to solve the discretized dy-
namical system numerically. The collocation method together with the software
package IPOPT are basic parts of a code – developed by Jochen Siehr – which
has been adapted to the mechanisms for solving the optimization problem used
for approximating SIMs in this thesis.

In Chapter 3 an historical overview of the trajectory-based optimization approach
for model reduction in chemical kinetics is shown starting with the idea from
Lebiedz in 2004 containing the computation of Minimal Entropy Production Tra-
jectories (MEPT). Over the years this optimization approach has been further
developed by Lebiedz, Reinhardt, Siehr, and Winckler and therefore different
versions of the optimization approach have arisen. Some important features are
presented in this chapter. Additionally, the numerical solutions are presented
(computed by the author) in a way that the accuracy of the solutions can be
compared.

Chapter 4 presents the results. First a new formulation of the optimization prob-
lem (called reverse mode) is presented based on ideas of Dirk Lebiedz followed
by the results achieved with this formulation. As a central part of this thesis it is
analytically shown for a two-dimensional linear and a two-dimensional non-linear
test mechanism that the reverse mode formulation characterizes the SIM exactly
for an infinite time horizon in the optimization problem. Also numerical results
are presented concerning these two test mechanisms and two non-linear mecha-
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nisms from chemical kinetics including six species. Considering these numerical
solutions, the reverse mode formulation seems to be a very good approach for the
characterization of SIMs.

The thesis is summarized in Chapter 5 and an outlook is given. In the latter
the focus is on the application to large-scale mechanisms and on the extension of
analytical results.
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Chapter 2

Theoretical Background

2.1 Theoretical Aspects

2.1.1 Dynamical Systems Theory for Singular Perturbation
Problems

Chemical mechanisms can be described by systems of ODEs. In this work equa-
tions of the following form are considered:

ċ(t) =
dc(t)
dt

= f
(
c(t)
)

(2.1)

with c(t) ∈ Rn and t ∈ R. Equations of the form (2.1) are called vector field,
ODE, or dynamical system. A solution of (2.1) is a map c : I ⊂ R→ Rn, t 7→ c(t)
such that c(t) satisfies (2.1). ODE (2.1) is also called vector field because the so-
lution c(t) can be interpreted as a curve in Rn and (2.1) gives the tangent vector
at each point of the curve. Note that the vector fields regarded in this work are
autonomous vector fields which means the right-hand side f does not explicitly
depend on time t.

Furthermore, the problems considered in this work involve two different time
scales. Thus, it is assumed that there exists a diffeomorphism so that the problem
(2.1) can be rewritten as the following fast system

ċf = f1 (cf, cs; ε) , cf(t) ∈ Rnf (2.2a)
ċs = εf2 (cf, cs; ε) , cs(t) ∈ Rns (2.2b)

where the parameter ε ∈ R (0 < ε � 1) measures the separation of time scales,
cf denotes the fast variables (cf generally evolves at an O(1) rate given by the
function f1), and cs the slow variables (cs evolves at an O(ε) rate). Additionally
it holds that nf + ns = n and the functions f1 and f2 are C∞ functions of cf,

9



10 2 Theoretical Background

cs, and ε in V × J with V being an open subset of Rnf × Rns and J being an
open interval containing ε = 0. In other words it is assumed that there exists
an invertible change of coordinates which transforms the system (2.1) into the
so-called singular perturbation form (2.2).

By introducing the slow time τ := εt, the system (2.2) can be reformulated as
the following slow system:

εc′f = f1 (cf, cs; ε) , cf(τ) ∈ Rnf (2.3a)
c′s = f2 (cf, cs; ε) , cs(τ) ∈ Rns (2.3b)

where the prime ′ denotes differentiation w.r.t. the new time τ (′ = d
dτ ). Systems

(2.1), (2.2), and (2.3) are equivalent for ε 6= 0 and the latter two are labeled
singular perturbation problems based on the discontinuous limiting behavior as
ε → 0. For the short-term dynamics of system (2.1) the fast system (2.2) is
more appropriate and for the long-term dynamics the slow system (2.3) is more
applicable.

By setting ε = 0 the fast system (2.2) reduces to an nf-dimensional system with
cs being a vector consisting of constant parameters:

ċf = f1 (cf, cs; 0) (2.4a)
ċs = 0. (2.4b)

The system (2.4) is denoted as reduced fast system.

In contrast to this the reduced slow system (slow system (2.3) with ε = 0) is
differential-algebraic where the dimension of the ODE system decreases from
nf + ns to ns:

0 = f1 (cf, cs; 0) (2.5a)
c′s = f2 (cf, cs; 0) . (2.5b)

One of the questions one tries to answer in singular perturbation theory is the
following: What is the relation between solutions of the singular perturbation
problems and those of the reduced systems?

The two unperturbed systems (2.4) and (2.5) offer different insights into the
limiting behavior of orbits (see Definition 2.1.3). Also geometric structures in
the fast and slow regimes can be analyzed by regarding the two reduced systems.
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Concepts for Systems of Ordinary Differential Equations

The following definitions and theorems establish the basic terminology from dy-
namical systems theory. Again the general formulation of an ODE system (2.1)
is considered: ċ(t) = f

(
c(t)
)
, c(t) ∈ Rn.

To distinguish a solution trajectory, an initial condition is specified (i.e. c(t0) =:
c0).

Definition 2.1.1 (Initial Value Problem (IVP))
The ODE system (2.1) together with a specified initial condition

ċ(t) = f
(
c(t)
)
, t ∈ I

c(t0) = c0

(2.6)

is called Initial Value Problem (IVP).

For a solution to an IVP being unique, certain regularity conditions have to be
imposed on the right hand side f . A vector valued function f(c) is said to satisfy
a Lipschitz-condition in the interval [t0, tf ] with respect to c (with the Lipschitz-
constant L > 0), if for c1, c2 ∈ Rn it holds that

‖f(c1(t))− f(c2(t))‖ 6 L‖c1(t)− c2(t)‖

for all t ∈ [t0, tf ]. The function is said to satisfy a local Lipschitz condition if
for every c ∈ Rn there exists a neighborhood U(c) such that f restricted to U
satisfies a Lipschitz condition (the Lipschitz constant L can take different values
on different neighborhoods). The following theorem is formulated for a non-
autonomous ODE system ċ(t) = f

(
t, c(t)

)
.

Theorem 2.1.2 (Existence and Uniqueness Theorem)
Let f be continuous on the strip S := {(t, c) | t0 6 t 6 tf , c ∈ Rn} with finite
t0 and tf and satisfy a local Lipschitz condition with respect to c. Then for every
pair (t, c0) with t ∈ [t0, tf ] and c0 ∈ Rn there exists exactly one function c(t) with

ċ(t) = f(t, c(t)) for t ∈ [t0, tf ] and c(t0) = c0.

Proof. See e.g. Walter [40]. 2

The function f satisfies a local Lipschitz condition with respect to c if f is con-
tinuously differentiable. This means if f is continuously differentiable w.r.t. c –
which is true for the ODE systems considered in this work – then a solution of
the IVP (2.6) exists and is unique.

A solution c(t) of (2.1) with the initial condition c(t0) = c0 (cf. IVP (2.6)) is
called trajectory through the point c0 at t = t0. This solution is also denoted by
c(t, c0).
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Definition 2.1.3 (Orbit)
For a point c0 in the phase space of (2.1) the orbit O(c0) through c0 is defined
as the set of points in phase space which lie on a trajectory passing through c0.
For c0 ∈ U ⊂ Rn the orbit through c0 is given by

O(c0) =
{
c ∈ Rn | c = c(t, c0), t ∈ I

}
.

To analyze a solution of (2.1) two definitions of stability are stated. A solution
c̄(t) of (2.1) is called stable (Lyapunov stable) if for any given ε > 0 there exists
a δ = δ(ε) > 0 such that ‖c̄(t) − c̆(t)‖ < ε for any solution c̆(t) of (2.1) that
satisfies ‖c̄(t∗) − c̆(t∗)‖ < δ with t > t∗, t∗ ∈ R. Lyapunov stability means that
solutions starting close to c̄(t) will remain close to c̄(t). A solution c̄(t) of (2.1) is
called asymptotically stable if it is Lyapunov stable and if there exists a constant
b > 0 such that limt→∞ ‖c̄(t)− c̆(t)‖ = 0 follows from ‖c̄(t∗)− c̆(t∗)‖ < b for any
solution c̆(t) of (2.1). In other words c̄(t) is asymptotically stable if nearby orbits
converge to c̄(t) for t→∞.

An important point for studying the system dynamics are sets of points involv-
ing special properties, e.g. fixed points. A fixed point of (2.1) is a point ceq ∈ Rn

where the function f vanishes (f(ceq) = 0). Other terms often used for fixed point
are equilibrium point, equilibrium solution, stationary point, or critical point. In
chemical kinetics they correspond to equilibrium states of the system that is be-
ing modeled.

Other more general sets of points are invariant sets. A set S ⊂ Rn is said to
be invariant under ċ = f (c) if for any c0 ∈ S it holds that c (t, c0) ∈ S for all
t ∈ R. If especially t > 0 S is called a positively invariant set. An example for
such invariant sets are fixed points.

In this work the focus is on invariant sets that have a special property, namely
they will be manifolds. A smooth manifold of dimension q is a set of points in Rp

(q 6 p) if each point in the set has a neighborhood that is locally C∞ diffeomor-
phic to an open subset of Rq. Thus, an invariant set S is said to be a Ck (k > 1)
invariant manifold if S has the structure of a Ck differentiable manifold. Fur-
thermore, if S is especially a positively invariant set then S is said to be a Ck

positively invariant manifold.

Consider a closed and invariant set A. If there exists an open neighborhood U
of A such that all solutions c(t) with initial solution in U will eventually enter
A (limt→∞ d

(
c (t) ,A

)
= 0 for a given metric d) then A is called an attract-

ing set. An attracting set which contains a dense orbit is called an attractor of
ċ = f (c) , c(t) ∈ Rn. An example for an attractor is an asymptotically stable
fixed point.
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Now the nature of solutions near a special solution c̄(t) is analyzed (c̄(t) denotes
a solution of (2.1)). Therefore

c(t) = c̄(t) + y

is regarded. After substituting into (2.1) and Taylor expansion about c̄(t) the
following expression is achieved:

ċ = ˙̄c(t) + ẏ = f
(
c̄(t)
)

+Df
(
c̄(t)
)
y +O

(
‖y‖2

)
with Df being the derivative of f .
Using ˙̄c(t) = f

(
c̄(t)
)
leads to

ẏ = Df
(
c̄(t)
)
y +O

(
‖y‖2

)
.

The linear system
ẏ = Df

(
c̄(t)
)
y (2.7)

is considered. If c̄(t) is an equilibrium solution (i.e. c̄(t) = ceq) then Df (ceq) is
a matrix with constant entries and by using the matrix exponential function the
solution of (2.7) through the point y(0) = y0 ∈ Rn is given by

y(t) = eDf(ceq)ty0. (2.8)

The eigenvalues of Df (ceq) determine the stability properties of ceq: The equi-
librium solution c(t) = ceq of the non-linear vector field (2.1) is asymptotically
stable if all eigenvalues of Df (ceq) have negative real parts.

Definition 2.1.4 (Hyperbolic Fixed Point)
Assume ceq being a fixed point of (2.1). If none of the eigenvalues of Df (ceq)
have zero real parts then ceq is called a hyperbolic fixed point.

Let ceq ∈ Rn be an equilibrium solution of the vector field ċ = f(c). The associ-
ated linearized system (2.8) can be written as

ẏ = Ay, y(t) ∈ Rn (2.9)

with A = Df(ceq) being a constant n × n matrix (Df denotes the Jacobian of
f). The solution of Equation (2.9) through the point y0 ∈ Rn is given by

y(t) = eAty0.
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The matrix A allows the definition of three subspaces which are all invariant
subspaces of the linearized Equation (2.9):

• The stable subspace Es which is spanned by the generalized eigenvectors of
A corresponding to the eigenvalues of A having negative real part

(Es = span{e1, . . . , es}).

• The unstable subspace Eu which is spanned by the generalized eigenvectors
of A corresponding to the eigenvalues of A having positive real part

(Eu = span{es+1, . . . , es+u}).

• The center subspace Ec which is spanned by the generalized eigenvectors
of A corresponding to the eigenvalues of A having zero real part

(Ec = span{es+u+1, . . . , es+u+c}).

It holds that s+u+ c = n. The Euclidean space Rn can be represented as direct
sum of these three subspaces. The non-linear system ċ = f(c) (corresponding to
the associated linearized one (2.9)) has invariant manifolds: The stable manifold
is tangent to the stable subspace Es at ceq and has the same dimension and the
unstable manifold is tangent to the unstable subspace Eu at ceq and has the
same dimension. The center manifold is tangent to the center subspace Ec at
ceq. Thus, the center manifold of an equilibrium solution of a vector field consists
of orbits whose behavior is not controlled by either the attraction of the stable
manifold or the repulsion of the unstable manifold.

Theorem 2.1.5 (Center Manifold Theorem)
Let f be a Cr vector field on Rn vanishing at ceq (f(ceq) = 0) and let A = Df(ceq)
be the Jacobian of f evaluated at ceq. Divide the spectrum of A into three subsets
σs, σc, and σu with

Re(λ)


< 0 if λ ∈ σs
= 0 if λ ∈ σc
> 0 if λ ∈ σu.

The (generalized) eigenspaces of σs, σc, and σu are Es, Ec, and Eu respectively.
Then there exist Cr stable and unstable invariant manifolds W u and W s tangent
to Eu and Es at ceq and a Cr−1 center manifold W c tangent to Ec at ceq. The
manifolds W u, W s, and W c are all invariant for the flow of f . The stable and
unstable manifolds are unique but W c need not be.

Proof. See e.g. Guckenheimer, Holmes [18]. 2

If the eigenvalues of the center subspace are all precisely zero – rather than just
real part zero – then a center manifold is called a slow manifold.
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The dynamical systems used in this work have a special property, namely they
are all dissipative. Dissipative systems are systems that are not conservative.
Conservative systems are defined by the following theorem:
Theorem 2.1.6 (Liouville)
Consider again the general autonomous vector field ċ = f(c), c(t) ∈ Rn. Suppose
that the vector field is divergence free, i.e. ∇ · f = 0. Then for any domain
D0 ⊂ Rn it holds that

V (t) = V (0)

with V (0) being the volume of D0 and V (t) being the volume of φt(D0) (φt(D0)
is the evolution of D0 under the flow φt(·), that is generated by the vector field).

Proof. See e.g. Wiggins [42]. 2

Concepts for Singular Perturbation Problems

To recapitulate, the Geometric Singular Perturbation Theory (GSPT) deals with
problems with clear separation of time-scales t and τ = εt, with 0 < ε � 1
being a small parameter. Furthermore, it constructs invariant manifolds to study
solutions of singularly perturbed dynamical systems.

Again the singular perturbation problems (2.2), (2.3) and the corresponding re-
duced systems (2.4), (2.5) are considered. Regarding system (2.5), the set of
points (cf, cs) ∈ V ⊂ Rnf × Rns for which f1(cf, cs; 0) = 0 is called the slow mani-
fold W0. If it is assumed that the eigenvalues of Dcff1 (Jacobian of f1 w.r.t. cf)
have all negative real part, then the implicit function theorem guarantees the ex-
istence of a smooth function z0 : K → Rnf (K being a compact domain K ⊂ Rns),
which represents this slow manifold by the equation

cf = z0(cs).

Then the dynamics of (2.5) on the slow manifoldW0 is governed by the equation

c′s = f2

(
z0(cs), cs; 0

)
.

Regarding system (2.2) with ε = 0, W0 is a manifold of equilibrium points, since
by definition ċf = 0 at all points

(
z0(cs), cs; 0

)
at which f1 vanishes. This impli-

cates W0 being invariant.

The fact that the slow manifold W0 consists of equilibrium points in the reduced
fast system (2.4) contrasts highly with the result that there is dynamics on W0

when W0 is analyzed in the reduced slow system (2.5), but both perspectives are
useful. In the following, this work will focus exclusively on those manifolds in
which, when ε = 0, each point

(
z0(cs), cs

)
on W0 is a hyperbolic fixed point of

the reduced fast system (2.4). In these systems the invariant manifoldW0 is said
to be normally hyperbolic.
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Example: Linear Planar System

As an example the following linear two-dimensional decoupled ODE system is
considered:

ċf = − cf (2.10a)
ċs = −εcs (2.10b)

with 0 < ε� 1. This is an example for the fast system (2.2) with nf, ns = 1. The
Jacobian of this system is the 2× 2 diagonal matrix with eigenvalues −1 and −ε.
This implicates the origin being a hyperbolic fixed point for all ε 6= 0. Moreover,
the origin is the only fixed point when ε 6= 0. System (2.10) is an example for a
situation, where the hyperbolicity of this fixed point is lost when ε = 0.

Using
(
cf(0), cs(0); ε

)
as initial data, the general solution is given by

cf(t) = cf(0)e−t

cs(t) = cs(0)e−εt.

First the geometric structure of the system (2.10) is discussed for ε = 0. After-
wards the full system is considered.

The reduced fast system (cf. (2.4)) is

ċf = −cf
ċs = 0.

Regarding this reduced model in the phase space of system (2.10), it can be seen
that the cs–axis is a line of fixed points, and hence an invariant manifold. The
fast component of the vector field, f1(cf, cs; 0) = −cf, linearized at the fixed point
cf = 0 has −1 as eigenvalue for each cs, what implicates the cs–axis being a nor-
mally hyperbolic invariant manifold (denoted as W0).

The fast fibers F 0
cs are the lines of constant cs for each cs and at the same time

these lines are invariant sets. The points (0, cs) at which these fast fibers are
attached to the manifold W0 are called the basepoints of the fibers.

By analyzing the case when 0 < ε� 1, the cs–axis is again an invariant manifold
labeled asWε. The flow on this manifold is slow, governed by the slow component
of the system:

εc′f = −cf (2.11a)
c′s = −cs. (2.11b)
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The individual fibers (lines cs =constant) are labeled by F ε
cs , where cs denotes the

cs–coordinate of the fiber’s basepoint. These fibers are not invariant individually
relative to (2.11) (in contrast to the case ε = 0). A trajectory that starts out
at the initial condition

(
cf(0), cs(0)

)
on F ε

cs(0) evolves in a way that
(
cf(τ), cs(τ)

)
lies on F ε

Φτ (cs(0)) with Φ being the flow of the full system. The evolution of an
arbitrary initial condition

(
cf(0), cs(0)

)
6= (0, 0) can be decomposed into

• a slow component given by the slow motion of the fibers’ basepoints along
the manifold Wε.

• a fast component in the normal direction governed by the exponential rate
of contraction along the fast fibers.

The Method of Matched Asymptotic Expansions and its Relation to
the Geometric Approach for Example (2.10)

The method of matched asymptotic expansions tries to write the solution of (2.10)
through a fixed initial condition

(
cf(0), cs(0)

)
(positive and independent of ε) as

a power series in ε:

cinnerf (t, ε) = cf,0(t) + εcf,1(t) + ε2cf,2(t) +O(ε3)

cinners (t, ε) = cs,0(t) + εcs,1(t) + ε2cs,2(t) +O(ε3).

Subsituting these expansions into (2.10) yields:

cinnerf (t, ε) = cf(0)e−t

cinners (t, ε) = cs(0)

(
1− εt+ ε2 t

2

2
+O(ε3)

)
.

This expansion is called inner expansion and the corresponding system (2.10) is
called the inner equation.

Regarding system (2.11), the power series expansion of the solution can be written
as (coefficients are functions of τ):

couterf (τ, ε) = cf,0(τ) + εcf,1(τ) + ε2cf,2(τ) +O(ε3)

couters (τ, ε) = cs,0(τ) + h.o.t.

where h.o.t. denotes higher order terms. The same procedure as above (substi-
tuting these expansions into system (2.11)) yields:

couterf (τ, ε) = 0 + ε · 0 + ε2 · 0 + · · ·+ cf(0)e−τ

couters (τ, ε) = cs(0)e−τ .
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According to the inner expansions, these equations are labeled outer expansions
and the corresponding system (2.11) is called the outer equation.

There is a relation between the geometric aspects and the method of matched
asymptotic expansions. The leading order term in the inner expansion (cf(t) =
cf(0)e−t, cs(t) = cs(0)) is the solution along the unperturbed fiber F 0

cs(0), whereas
the leading order term in the outer expansion (cf(τ) = 0, cs(τ) = cs(0)e−τ ) corre-
sponds to the evolution of that fiber’s basepoint along W0. The extended inner
expansion describes the initial evolution of points on F ε

cs(0) as well as the motion
of points on the fibers close to Wε. On the other hand, the extended outer ex-
pansion describes the evolution of the basepoints on Wε as well as the evolution
of points close to Wε.

Next, a basic result from Fenichel theory [10, 11, 12, 13, 20] is stated implicating
the persistence of W0 as slow manifold (provided that special assumtions are
fulfilled), so for all 0 < ε� 1 there exists a slow manifold Wε.

Fenichel Theory for Singular Perturbation Problems

By considering the general system (2.2), Fenichel geomertric theory [10, 11, 12,
13, 20] states a theorem for boundaryless compact manifolds. For these theorems
the following additional assumptions on the system (2.2) are needed:

1. A compact manifoldW0 with boundary (contained in {(cf, cs) : f1(cf, cs; 0) =
0}) exists and is given by a graph of a C∞ function cf = z0(cs) for cs ∈ D ⊂
Rns with D being a compact, simply connected domain with its boundary
being a (n−1) dimensional C∞ submanifold. Furthermore, D is overflowing
invariant with respect to (2.3) when ε = 0. (A compact manifold with
boundary is said to be overflowing invariant when

• the vector field is tangent to the manifold at every point inside the
manifold.

• the vector field points outward at every point on the boundary of the
manifold.)

2. The set W0 ist normally hyperbolic relative to (2.4). Furthermore, it is
required that for all points p ∈ W0 there are k (resp., l) eigenvalues of
Dcff1(p; 0) (derivative of f1 w.r.t. cf) with positive (resp., negative) real
parts bounded away from zero with k + l = nf.

Before formulating the Fenichel Theorem it is necessary to give the definition of a
locally invariant manifold. An open subset S is said to be locally invariant w.r.t.
an open set T under the system ċ = f(c) if S is a subset of T and if any trajectory
leaving S simultaneously leaves T . If the set of points defining a manifold is a
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locally invariant set, then the manifold is said to be a locally invariant manifold
of the system ċ = f(c).

Theorem 2.1.7
Consider system (2.2) satisfying the additional assumptions 1. and 2. For a
sufficiently small ε > 0 there exists a Cr function (with r < +∞) zε(cs; ε) defined
on D such that the manifold Wε = {(cf, cs) : cf = zε(cs; ε)} is locally invariant
under (2.2). Furthermore, Wε is Cr O(ε) close to W0.

For the proof of Theorem 2.1.7 see e.g. [21].

The manifold Wε from Theorem 2.1.7 is called slow manifold for 0 < ε� 1.

Note that the function zε(cs; ε) is generally nonunique. Furthermore, zε(cs; ε)
admits a perturbation expansion

zε(cs; ε) = z0(cs) + εz1(cs) +O(ε2)

which is plugged into the invariance equation

εDcszε(cs; ε) · f2

(
zε(cs; ε), cs; ε

)
= f1

(
zε(cs; ε), cs; ε

)
to solve order by order for zε(cs; ε) (the expression Dcszε(cs; ε) denotes the deriva-
tive of zε(cs; ε) w.r.t. cs). Fenichel theory states that the system (2.2) – under
special assumptions – possesses a slow manifold.

In this thesis, ODE systems of the form (2.1) are considered assuming that there
exists a diffeomorphism which transforms such ODE systems into singular per-
turbed systems. By reason of model reduction, the aim of this work is the de-
scription of the long-term dynamics of the system and hence the computation of
such slow manifolds Wε.
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2.1.2 Chemical Reaction Kinetics

The dynamical systems considered in this work are chemical reaction mecha-
nisms (amongst others), which can be modeled by systems of ODEs. This is why
this subsection points out a fundamental knowledge of chemical reaction kinetics.

It is assumed that there are n chemical species – denoted as A1, . . . ,An – partic-
ipating in a chemical reaction mechanism, that takes place in a closed system (a
system, that exchanges energy, but not matter with its exterior). This reaction
mechanism – composed of m reactions – is given by

n∑
s=1

ν(e)
rs As

kr,+


kr,−

n∑
s=1

ν(p)
rs As, r = 1, . . . ,m

where each r denotes an elementary reaction r. Here ν(e)
rs and ν

(p)
rs denote sto-

ichiometric coefficients of educts/reactants and products in reaction r and kr,+
and kr,− denote the rate coefficients of an elementary reaction r.

The concentration of a chemical species Ai is ci = ni
V

with ni being the amount of
substance of that species and V being the volume. By reason of V being constant
in the mechanisms considered in this work, the reaction kinetic equations are given
by

ċ =
m∑
r=1

νrWr(c) (2.12)

where νr stands for the vector νr = (ν
(p)
r1 − ν

(e)
r1 , . . . , ν

(p)
rn − ν(e)

rn )T and Wr(c) is the
reaction rate function of reaction r, which is defined by the mass action law

Wr(c) = Wr,+(c)−Wr,−(c) = kr,+

n∏
s=1

cν
(e)
rs
s − kr,−

n∏
s=1

cν
(p)
rs
s .

Thus, the rate coefficients kr,+ and kr,− are the constants of the direct (Wr,+(c))
and of the inverse (Wr,−(c)) reaction rates of the rth elementary reaction and
can be computed by the Arrhenius law, which is given by

kr,± = Ar,±T
br,± exp

(
−Ea,r,±

RT

)
.

Here Ar,± and br,± are constants, Ea,r,± is the activation energy, R is the gas
constant (R = 8.314472 J/(K · mol)), and T denotes the temperature (T =
const in the mechanisms considered in this thesis). Furthermore, at chemical
equilibrium (denoted as ceq) it holds that

Wr,+(ceq) = Wr,−(ceq) for all r = 1, . . . ,m.
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As mentioned above, the systems considered in this work have isochoric (V =
const) and isothermal (T = const) conditions and in this case a Lyapunov function
is known:

VV,T =
U

kBT
− S

kB

with U being the internal energy, S being the entropy, and kB denotes the Boltz-
mann constant (see [17]). In the context of dynamical systems (ċ = f(c), c(t) ∈
Rn, e.g. (2.12)) a Lyapunov function is a C1-function V : U → R in a neighbor-
hood U of a fixed point ceq, if the following properties are satisfied:

1. V(ceq) = 0

2. V(c) > 0 if c 6= ceq

3.
dV(c)

dt
6 0 in U \ {ceq}.

As a Lyapunov function is known for the chemical dynamical systems used in
this work, the following theorem is applicable:

Theorem 2.1.8
If a Lyapunov function V exists for a dynamical system ċ = f(c) with a fixed
point ceq, then ceq is a stable fixed point. Moreover, if strict inequality holds for
3. ceq is asymptotically stable.

Proof. See e.g. Wiggins [42]. 2



22 2 Theoretical Background

2.1.3 Optimization

In this thesis a model reduction method is proposed which is formulated as an
optimization problem where a functional has to be minimized under certain con-
straints comprising an ODE system. After discretization of the ODE constraint
via collocation the resulting Non-Linear Programming (NLP) problem is solved
by using a code developed by Jochen Siehr including the software package IPOPT
by Wächter and Biegler [39]. In this software package an interior point method
is implemented which is based on the theory of optimization [31] (e.g. Karush–
Kuhn–Tucker conditions).

The general form of a finite-dimensional NLP is the following:

min
ω∈Rnω

F (ω) (2.13a)

subject to

G(ω) = 0 (2.13b)
H(ω) > 0 (2.13c)

with F : Rnω → R, G : Rnω → RnG , andH : Rnω → RnH being twice continuously
differentiable. The function F is called objective function whereas the functions
G and H are the constraints : The equality constraints G and the inequality
constraints H.

Definition 2.1.9 (Feasibility and Optimality)
The point ω∗ ∈ S = {ω | G (ω) = 0, H (ω) > 0} is called feasible point and
S is called feasible set. A feasible point ω∗ is called a local minimizer of NLP
(2.13) if there exists a neighborhood Uε(ω∗) of ω∗ such that F (ω∗) 6 F (ω) for all
ω ∈ Uε(ω∗)∩S. The inequality constraint Hi(ω) > 0 is called active if Hi(ω) = 0.
All active inequality constraints at the feasible point ω are denoted by Hact(ω). A
feasible point ω is called a regular point if the Jacobian of the active constraints

∇G̃(ω)T := ∇

(
G(ω)
Hact(ω)

)T

has full rank (∇ωG(ω) :=

(
∂G

∂ω
(ω)

)T
).

The Lagrangian function L is defined as

L (ω, λ, µ) := F (ω)− λTG(ω)− µTH(ω)

with λ ∈ RnG being the Lagrange multiplier (vector) of the equality constraints
and µ ∈ RnH being the Lagrange multiplier (vector) of the inequality constraints.
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Theorem 2.1.10 (Karush–Kuhn–Tucker Necessary Conditions)
Assume ω∗ being a local minimizer of (2.13) and a regular point. Then, there
exist Lagrange multiplier vectors λ∗ ∈ RnG and µ∗ ∈ RnH such that (ω∗, λ∗, µ∗)
satisfy the following necessary conditions:

∇ωL
(
ω∗, λ∗, µ∗

)
= 0 (2.14a)

G
(
ω∗
)

= 0 (2.14b)
H
(
ω∗
)
> 0 (2.14c)

µ∗ > 0 (2.14d)
µ∗jHj(ω

∗) = 0, j = 1, . . . , nH (2.14e)

These conditions are called Karush–Kuhn–Tucker necessary conditions or KKT
conditions.

Proof. See e.g. Nocedal and Wright [31]. 2

The KKT conditions play an important role for numerically solving the NLP by
using an interior point method (see Subsection 2.2.1). For more details see [31]. A
triple (ω∗, λ∗, µ∗) which satisfies the necessary Karush–Kuhn–Tucker conditions
(2.14) is called a stationary point or Karush–Kuhn–Tucker (KKT) point.

In this thesis the general problem can be formulated as the following optimization
problem:

min
c(·)

∫ tf

t0

L
(
c(t), p

)
dt (2.15a)

subject to

ċ(t)− f
(
c(t), p

)
= 0, ∀t ∈ [t0, tf] (2.15b)

r0(c(t0), p) + rf
(
c(tf), p

)
= 0 (2.15c)

where t0 and tf denote the initial and final time, respectively, and the functions L,
g, r0, and rf are at least twice continuously differentiable. Inequality constraints
(2.13c) are not present in this formulation. A system of autonomous ODE’s en-
ters the optimization problem formulation as an equality constraint (2.15b) which
describes the system dynamics of chemical kinetics (see Subsection 2.1.2). Here
c(t) ∈ Rnc denotes the differential state vector, t ∈ R time, and p ∈ Rnp is a
vector containing constant system parameters (reaction coefficients in chemical
kinetics). Additionally there are boundary constraints (2.15c) which can be used
e.g. to fix concentrations of chemical species at a given point of time.
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2.2 Numerical Aspects

After ODE discretization via collocation the resulting Non-Linear Programming
problem (NLP) which is used for the model reduction can be solved as a stan-
dard NLP via the Interior Point (IP) method. In general, one has to decide how
to treat the differential equation constraint and the objective functional. It is
often beneficial to have an ‘all at once’ approach that couples simulation and
optimization via explicit discretization of the ODE constraint. This so-called
simultaneous approach has the advantage of introducing more freedom into the
optimization problem, since the differential equation model does not have to be
solved exactly in each iteration of the optimization. Especially for highly unsta-
ble ODE problems a fully discrete collocation approach seems appropriate for the
ODE constraint. On a predefined time grid the collocation method constructs
polynomials obeying the differential equation at a certain number of nodes de-
pending on its degree. For the numerical solution of the ODEs presented in this
work a Radau-method with linear, quadratic, and cubic polynomials is used.

The NLP is solved numerically by using the robust IP method implemented in
IPOPT [39] including linear algebra solvers of the HSL routines [19]. The required
derivatives are computed by using the open source automatic differentiation pack-
age CppAD [4]. Plots have been generated using MATLABr.

2.2.1 Interior Point Method

In the software package IPOPT a primal-dual interior-point filter line-search al-
gorithm for large-scale programming is implemented. As this program is used
for the computations done in this thesis for solving the optimization problem
numerically the algorithm is motivated in this subsection.

The following problem is considered:

min
ω∈Rnω

F (ω) (2.16a)

subject to

G(ω) = 0 (2.16b)
ω > 0. (2.16c)

The algorithm computes approximate solutions for a sequence of subproblems
(barrier problems)

min
ω∈Rnω

φν (ω) := F (ω) + ν
nω∑
i=1

ln
(
ω(i)
)

(2.17a)

subject to

G(ω) = 0 (2.17b)
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for a decreasing sequence of barrier parameters ν converging to zero. This is
equivalent to applying a homotopy method to the primal-dual equations:

∇F (ω) +∇G(ω)λ− µ = 0 (2.18a)
G(ω) = 0 (2.18b)

ΩMe− νe = 0 (2.18c)

(Ω := diag(ω), M := diag(µ), e := (1, 1, 1, . . . , 1)T ).
Here ν is the homotopy parameter which converges to zero and λ ∈ RnG and
µ ∈ Rnω are the Lagrange multipliers corresponding to (2.16b) and (2.16c), re-
spectively. Equations (2.18) can also be seen as the Karush–Kuhn–Tucker condi-
tions for the original problem (2.16) for ν = 0 and ω, µ > 0. First the presented
algorithm computes an approximate solution to problem (2.17) for fixed ν. Then
it decreases the barrier parameter and continues solving the next barrier problem
based on the previous approximate solution.

A damped Newton’s method is applied to the Equations (2.18) for solving the
barrier problem (2.17) for a fixed value νj.Wk Ak −I

ATk 0 0
Mk 0 Ωk

(dxkωdλk
dµk

)
= −

∇F (ωk) + Akλk − µk
G(ωk)

ΩkMke− νje


with Ak := ∇G(ωk), (dωk , d

λ
k , d

µ
k) being the search directions and Wk being the

Hessian ∇2
ωωL(ωk, λk, µk) of the Lagrangian function for problem (2.16):

L(ω, λ, µ) := F (ω) +G(ω)Tλ− µ.

The proposed method computes the solution by first solving the smaller symmet-
ric linear system(

Wk + Σk Ak
ATk 0

)(
dωk
dλk

)
= −

(
∇φνj(ωk) + Akλk

G(ωk)

)
(2.19)

with Σk := Ω−1
k Mk and subsequently computing the vector dµk via

dµk = νjΩ
−1
k e− µk − Σkd

ω
k . (2.20)

It is necessary to modify the iteration matrix of Equation (2.19) to ensure the
existence of a solution to (2.19) (the iteration matrix in (2.19) is singular if Ak
does not have full rank) and to guarantee certain properties for the line-search
filter method (therefore the matrix in the top-left block in (2.19) – projected onto
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the null space of the constraint Jacobian ATk – has to be positive definite). Hence
the following linear system is used in the algorithm:(

Wk + Σk + δwI Ak
ATk −δcI

)(
dωk
dλk

)
= −

(
∇φνj(ωk) + Akλk

G(ωk)

)
(2.21)

with δw, δc > 0.

After computation of the search directions from (2.20) and (2.21) the next itera-
tion is given by:

ωk+1 := ωk + αkd
ω
k

λk+1 := λk + αkd
λ
k

µk+1 := µk + αµkd
µ
k

where αk, αµk ∈ (0, 1] denote the step sizes.

In order to ensure global convergence a line-search filter method by Fletcher and
Leyffer [14] is used. In this process the step sizes αk, αµk are chosen in such a way
that the objective function φν(ω) or the constraint violation is minimized in the
subsequent step. For more details see [38, 39].
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2.2.2 Collocation Method

As the system dynamics enter the optimization problem as an ODE system con-
straint, this system has to be solved numerically. Therefore a collocation method
is used in this work which is presented below.

The vector field
ċ (t) = f

(
c (t)

)
, c (t) ∈ Rn

with fixed value
c (t∗) = ct∗

is considered. This ODE system is to be solved over the interval [t∗, t∗ + h].
Therefore the collocation points are denoted by

0 6 c1 < c2 < · · · < cs 6 1.

By using the corresponding collocation method the solution c is approximated by
a polynomial p of degree s which satisfies the following s+1 collocation conditions:

• p(t∗) = ct∗

• ṗ (t∗ + cih) = f
(
p (t∗ + cih)

)
, i = 1, . . . , s.

In this work s is chosen as s = 1, s = 2, or s = 3.

These conditions lead to the following expression (see [9] for more details):

p (t∗ + h) = ct∗ + h
s∑
j=1

bjkj (2.22)

with

ki = f

ct∗ + h
s∑
j=1

aijkj

 . (2.23)

The choice of the values for ci, aij, and bj is dependent on the collocation method
which is used. In this work a Radau-method with linear, quadratic, or cubic
polynomials is used for the numerical solution of the ODE constraint and thus
the values of the coefficients are listed in the Tables 2.1–2.4:
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Table 2.1: General scheme of the coefficients ci, aij , and bj in (2.22) and
(2.23) (s = n).

c1 a11 a12 · · · a1n

c2 a21 a22 · · · a2n

...
...

... . . . ...

cn an1 an2 · · · ann

b1 b2 · · · bn

Table 2.2: Values of the coefficients ci, aij , and bj (cf. Table 2.1). Radau-
method: Linear polynomials (s = 1, i.e. i = j = 1).

1 1

1

Table 2.3: Values of the coefficients ci, aij , and bj (cf. Table 2.1). Radau-
method: Quadratic polynomials (s=2).

1

3

5

12
− 5

12

1
3

4

1

4

3

4

1

4
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Table 2.4: Values of the coefficients ci, aij , and bj (cf. Table 2.1). Radau-
method: Cubic polynomials (s=3).

4−
√

6

10

88− 7
√

6

360

296− 169
√

6

1800

−2 + 3
√

6

225

4 +
√

6

10

296 + 169
√

6

1800

88 + 7
√

6

360

−2− 3
√

6

225

1
16−

√
6

36

16 +
√

6

36

1

9

16−
√

6

36

16 +
√

6

36

1

9
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Chapter 3

Trajectory-Based Model Reduction
in Chemical Kinetics via Numerical
Optimization

In this chapter a historical overview concerning the trajectory-based optimiza-
tion approach for model reduction in chemical kinetics is given. This optimization
problem wants to identify a SIMWε via minimization of an objective function in-
cluding information about the course of trajectories. The identification of a SIM
results from computing points that lie on or at least near a SIM by using this
optimization approach. Therefore, special variables (reaction progress variables)
are fixed at a special point of time (SIM parameterization) and the optimization
problem computes the values of the other free variables at this time in a way
that the corresponding point lies on or at least near the SIM. This procedure is
called species reconstruction and represents a function (cf. zε in Theorem 2.1.7)
mapping such reaction progress variables onto the full species composition by
determining a point on the SIM.

This novel concept for model reduction in chemical kinetics has been introduced
in [22] by Lebiedz. The concept can be interpreted as a minimization of relax-
ing (chemical) forces along reaction trajectories. As relaxation criterion Lebiedz
used entropy production (see Subsection 3.2.1) but the results with this crite-
rion have not been satisfying. The next step has been the idea that force and
curvature are closely related as, for example, it can be seen in Newton’s sec-
ond law F = ma = mẍ. The interpretation of the novel concept is the min-
imization of chemical forces and this is why other relaxation criteria – based
on the concept of curvature – have been developed and tested over time (see
[23, 24, 26, 28, 32, 33, 43]).

In the first section the optimization approach is introduced followed by the pre-
sentation of different relaxation criteria.

31
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3.1 Optimization Approach

As mentioned in the introduction, Slow Invariant attracting Manifolds (SIMs)
are present in the phase space of the dynamical systems considered in this work.
These SIMs can be described by a solution of the initial value problem

dc(t)
dt

= f
(
c(t)
)
, c(t) ∈ Rn

c(0) = c0

for special initial values c(0) = c0. For the computation of those initial values
the following optimization problem has been developed. Up to now, the general
trajectory-based optimization approach was formulated as

min
c(t)

∫ tf

0

Φ
(
c(t)
)
dt (3.1a)

subject to

dc(t)
dt

= f
(
c(t)
)

(3.1b)

0 = g
(
c(0)

)
(3.1c)

cj(0) = c0
j , j ∈ Ifixed. (3.1d)

The variable c(t) = (ci(t))
n
i=1 denotes the state vector which contains the con-

centrations of the chemical species. The objective function is defined in (3.1a)
wherein Φ

(
c(t)
)
is used, describing the optimization criterion related to the de-

gree of relaxation of chemical forces. The time tf has been chosen large enough
so that the final point of integration (final state) is close to equilibrium. Sys-
tem dynamics (e.g. chemical kinetics determined by the reaction mechanism) are
described in Equation (3.1b) and enter the optimization problem as equality con-
straints. Hence, an optimal solution of (3.1) always satisfies the system dynamics
of the full ODE system and therefore represents a solution trajectory of (3.1b).
Up to now, it has not been assumed that there exists a diffeomorphism in a way
that the system (3.1b) can be rewritten as a singular perturbed system (2.2). Ad-
ditional constraints (e.g. chemical element mass conservation relations in the case
of chemical kinetics that have to be obeyed due to the law of mass conservation)
are collected in the function g in (3.1c). The index set Ifixed contains the indices of
state variables (denoted as reaction progress variables) with fixed values at time
t = 0 chosen to parameterize the reduced model i.e. the slow attracting manifold
to be computed. Thus, those state variables representing the actual degrees of
freedom within the optimization problem are cj(0), j /∈ Ifixed. The process of
determining cj(0), j /∈ Ifixed from c0

j , j ∈ Ifixed is known as species reconstruction
and represents a function, mapping the reaction progress variables to the full
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species composition by determining a point on the attracting SIM. State vari-
ables that are chosen to parameterize the reduced model (SIM) are fixed via the
equality constraint (3.1d) at t = 0 (fixation of the reaction progress variables).
The choice of the reaction progress variables is dependent on a detailed knowl-
edge of the chemical mechanism. However, the approach is not restricted to a
particular choice.

3.2 Relaxation Criteria

In the next two subsections different ideas for choosing the criterion Φ
(
c(t)
)
are

presented which in general should fulfill the following requirements:
• Φ should describe the extent of relaxation of “chemical forces” in the evo-

lution of reaction trajectories towards equilibrium.

• Φ should be computable from easily accessible data.

• Φ should be twice continuously differentiable along reaction trajectories.
Another property is the consistency which is desirable but not necessary:
Definition 3.2.1
Suppose an optimal trajectory c̃(t) has been computed as a solution of (3.1). Take
the concentrations of the reaction progress variables at some time t1 > 0 as new
initial concentrations and solve (3.1) again. If the resulting trajectory ĉ(t) is equal
to the part of the original trajectory that starts from t1 (i.e. ĉ(t) = c̃(t+ t1)) the
optimization criterion Φ is called consistent. Otherwise it is called inconsistent.
The consistency property is visualized in Figure 3.1: The blue circle represents
an optimal solution of the optimization problem (3.1). The point which is repre-
sented by a black circle is the solution computed with a consistent criterion and
the red circle denotes a solution computed with an inconsistent criterion.

Later the solutions of the optimization problem are called consistent/inconsitent
which is to say the solutions are computed with an consistent/inconsistent crite-
rion. This consistency property measures the invariance of the manifolds and it
is chosen in this way because SIMs are attractve – regardless of their dimensions.
This means that trajectories starting from arbitrary initial values converge to-
wards the SIM and once a trajectory is ε-close to the SIM it stays there.

The aim of finding a consistent criterion (i.e. the resulting solution of the op-
timization problem identifies the SIM exactly) characterizing the SIM is one
of the main tasks concerning the trajectory-based optimization approach. Be-
low different criteria are presented which have been tested by various authors
[22, 26, 32, 33, 43].
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Figure 3.1: Visualization of the consistency property: The blue circle
denotes an optimal solution of the optimization problem (3.1), the black
circle denotes a solution computed with a consistent criterion, and the red
circle a solution computed with an inconsistent criterion.

To compare these criteria with each other the numerical solutions of one chemical
mechanism including six species (see Table 3.1) have computed with different
criteria by the author. These results can be seen in Figures 3.2–3.3.

Table 3.1: Model hydrogen combustion reaction mechanism with constant
reaction rates including six species.

Reaction k+ k−

H2 
 2 H 2.0 216.0
O2 
 2 O 1.0 337.5
H2O 
 H + OH 1.0 1400.0
H2 + O 
 H + OH 1000.0 10800.0
O2 + H 
 O + OH 1000.0 33750.0
H2 + O 
 H2O 100.0 0.7714
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The kinetic model (ODE system) corresponding to the mechanism given in Table
3.1 is given via the law of mass action kinetics (see [3, 41]) by

dcH2

dt
=− k1cH2 + k−1c

2
H2
− k4cH2cO + k−4cHcOH

− k6cH2cO + k−6cH2O

dcH
dt

= 2k1cH2 − 2k−1c
2
H2

+ k3cH2O − k−3cHcOH

+ k4cH2cO − k−4cHcOH − k5cO2cH + k−5cOcOH

dcO2

dt
=− k2cO2 + k−2c

2
O − k5cHcO2 + k−5cOcOH

dcO
dt

= 2k2cO2 − 2k−2c
2
O − k4cH2cO + k−4cHcOH

+ k5cHcO2 − k−5cOcOH − k6cH2cO + k−6cH2O

dcH2O

dt
=− k3cH2O + k−3cHcOH + k6cH2cO − k−6cH2O

dcOH

dt
= k3cH2O − k−3cHcOH + k4cH2cO − k−4cHcOH

+ k5cHcO2 − k−5cOcOH.

This mechanism has also been used in the diploma thesis of Miriam Winkler [43]
and in the dissertation of Volkmar Reinhardt [32]. The conservation relations are
given by

2cH2 + 2cH2O + cH + cOH = 2.0

2cO2 + cH2O + cO + cOH = 1.0.

With these mass conservation equations – which enter the optimization problem
(3.1) in Equation (3.1c) – the system has four degrees of freedom.

3.2.1 Entropy Production

The first criterion was presented by Lebiedz in [22]. In his model reduction
approach a special trajectory (called Minimal Entropy Production Trajectory
(MEPT)) is computed by minimizing the sum of the entropy production rates of
single reaction steps. The optimization criterion Φ of the general optimization
problem (3.1) is chosen as

Φ
(
c(t)
)

=
m∑
j=1

dSj
dt

(3.2)

with dSj/dt = R(Rj→ − Rj←) ln
(
Rj→/Rj←

)
and R being the gas constant

(R = 8.314472 J/(K · mol)). The notations Rj→ and Rj← denote the forward
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and backward reaction rates for an elementary reaction step j and dSj/dt is the
entropy production rate for reaction j.

In Figure 3.2 the results of the optimization problem (3.1) including the entropy
production (3.2) as criterion are shown. Therefore different optimization prob-
lems – including different values of the reaction progress variables – have been
solved. By reason of better visualization the six-dimensional phase space can
be seen in five two-dimensional plots (the reaction progress variable is plotted
against the other free variables). The blue curves are the trajectories integrated
numerically starting at the blue circles which represent the solutions of the opti-
mization problems. The red dot represents the chemical equilibrium. The final
time tf has been chosen ‘large enough’ for the trajectory to be close to the equi-
librium point.
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Figure 3.2: Results for the optimization problem (3.1) by using the entropy
production (3.2) as criterion. The final time tf is fixed at tf = 1.0 and cH2O
is chosen as reaction progress variable.

Obviously one can see that the solutions are inconsistent (mainly in the second
(cH) and in the fourth (cO) plot). Thus, other relaxation criteria have been
developed in order to find one characterizing the SIM (approximately) exactly.
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3.2.2 Curvature-Based Relaxation Criteria

As stated above the novel concept for model reduction can be interpreted as a
minimization of relaxing forces along reaction trajectories. From the opposite
point of view this means that chemical forces are maximally relaxed along tra-
jectories on the attracting SIM. This is why Φ should characterize the relaxation
of chemical forces.

From physics it is well-known that the geometric interpretation of a force is closely
related to curvature. This can be seen in Newton’s second law F = ṗ(t) with
p(t) = m(t)ẋ(t) for example. Here F denotes the force, p the momentum, m
the mass, and ẋ the velocity. With a temporally constant mass this leads to the
following expression:

F = mẍ = ma.

In this equation it can be seen that force is closely related to the acceleration a
which is equal to the second derivative of the state vector x(t) with respect to
time t. The acceleration contains information about the curvature of x(t) and
thus Newton’s second law describes a relation between force and curvature.

Next a relaxation criteria is presented based on this concept of “force≈ curvature”.

Euclidean Norm

To obtain a curvature-based objective function the principle of “force≈ curvature”
is transferred to chemical systems. In dissipative ODE systems modeling chemical
reaction kinetics the phase flow generally causes anisotropic volume contraction
due to multiple time scales with spectral gaps. This force relaxation leads to
a change of the reaction velocity (in the context of chemical kinetics). Inspired
by Newton’s geometric interpretation of a force being the second derivative of
the state vector with respect to time, the second time-derivative of the chemical
composition c(t) characterizing the rate of change of reaction velocity through
relaxation (dissipation) of chemical forces is regarded:

ċ = f(c), c̈ =
dċ
dt

=
dċ
dc
· dc
dt

= Jf (c) · f. (3.3)

The relaxation of chemical forces results in a change of ċ(t) along a reaction
trajectory on its way towards chemical equilibrium. This change can be charac-
terized by taking the directional derivative of the tangent vector of the curve c(t)
with respect to its own direction v := ċ/‖ċ‖2 = f/‖f‖2. Analytically this can be
formulated as

Dv ċ(t) :=
d
dα
f(c(t) + αv)

∣∣∣∣
α=0

= Jf (c) ·
f

‖f‖2

,
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with Jf (c) being the Jacobian of f evaluated at c(t) and ‖ · ‖2 denoting the
Euclidean norm. Hence the preliminary optimization criterion is chosen as

Φ̃(c) =
‖Jf (c) · f‖2

‖f‖2

. (3.4)

The natural way for the evaluation of criterion (3.4) in the formulation of the
objective function (3.1a) would be a path integral along the trajectory towards
equilibrium ∫ l(tf)

l(0)

Φ̃
(
c
(
l(t)
))

dl(t)

with l(t) being the Euclidean length of the curve c(t) at time t given by

l(t) =

∫ t

0

‖ċ(τ)‖2 dτ.

This results in the reparameterization

dl(t) = ‖ċ(t)‖2 dt.

Then the objective function used in (3.1a) is (using (3.3)):∫ tf

0

Φ
(
c(t)
)
dt =

∫ tf

0

Φ̃
(
c(t)
)
‖ċ(t)‖2 dt =

∫ tf

0

‖Jf (c) · f‖2 dt =

∫ tf

0

‖c̈‖2 dt. (3.5)

Figure 3.3 shows the results using Φ
(
c(t)
)

= ‖Jf (c)·f‖2 as relaxation criterion. In
comparison to the entropy production as objective function the curvature-based
relaxation criterion measured in the Euclidean norm yields better results. But
the results are not invariant and so additional relaxation criteria have been tested
in [26, 32], which still do not give significantly better results in the fomulation
of the general optimization problem (3.1): All points do not lie on the invariant
SIM exactly.
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Figure 3.3: Results for the optimization problem (3.1) by using the ob-
jective function (3.5). The final time tf is fixed at tf = 1.0 and the cH2O is
chosen as reaction progress variable.
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Chapter 4

Results

In the first section of this chapter a new formulation of the optimization problem
(3.1) called reverse mode is introduced. This formulation is based on an idea of
Dirk Lebiedz. Subsequently theoretical and numerical results are presented for
different models. For a two-dimensional linear system and a common non-linear
test problem (Davis–Skodje) it is analytically shown that the reverse mode op-
timization approach asymptotically identifies the SIM Wε exactly in the limit
of both an infinite time horizon of the optimization problem with fixed spectral
gap of the dynamical system and infinite spectral gap with a fixed finite time
horizon. This is the central part of this thesis. Numerical results for linear and
non-linear (Davis–Skodje and Semenov) problems as well as more realistic higher-
dimensional chemical reaction mechanisms are presented. This new formulation
as well as theoretical and numerical results concerning the reverse mode formu-
lation can also be found in [27]. Numerical results are obtained by adapting a
code – which has been developed by Jochen Siehr – to the mechanisms treated
in this thesis.

In the linear model as well as in the Davis–Skodje model the state variables
are denoted as x(t) whereas

(
x(t), y(t)

)T is used as state vector in the Semenov
model.

4.1 New Formulation of the Optimization Approach

The dynamical systems considered in this work can be written as

ċ(t) = f
(
c(t)
)
, c(t) ∈ Rn (4.1)

where either the system (4.1) has a singular perturbation form

ċf = f1 (cf, cs; ε) , cf(t) ∈ Rnf (4.2a)
ċs = εf2 (cf, cs; ε) , cs(t) ∈ Rns (4.2b)

41
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or it is assumed that there exists a diffeomorphism in a way that the system (4.1)
can be rewritten as a singular perturbed system (4.2). Furthermore, the phase
space of the dynamical systems considered in this thesis involves SIMs Wε which
can be expressed as the graph of a function zε(cs; ε).

To enhance the accuracy of approximation to SIMsWε the optimization problem
(3.1) has been modified and this adapted version can be formulated as

min
cf(t)

∫ tf

t0

Φ
((
cf(t), cs(t)

)T) dt (4.3a)

subject to

ċf(t) = f1

(
cf(t), cs(t); ε

)
(4.3b)

ċs(t) = εf2

(
cf(t), cs(t); ε

)
(4.3c)

0 = g
((
cf(t∗), cs(t∗)

)T) (4.3d)

cs(t∗) = ct∗s , cs ∈ K (4.3e)

with t0 6 t∗ 6 tf and K ⊂ Rns being a compact domain. In this chapter the
criterion

Φ

(cf(t)
cs(t)

) =

∥∥∥∥∥∥
(
Jf1
(
cf(t), cs(t); ε

)
Jf2
(
cf(t), cs(t); ε

)) ·(f1

(
cf(t), cs(t); ε

)
f2

(
cf(t), cs(t); ε

))∥∥∥∥∥∥
2

2

(4.4)

is used for all mechanisms (except for the results computed with the entropy
production). Here, Jfi

(
cf(t), cs(t); ε

)
denotes the derivative of fi, i = 1, 2 w.r.t.

c(t) =
(
cf(t), cs(t)

)T . Criterion (4.4) is very similar to the criterion given in
Equation (3.5) with the small modification of squaring the Euclidean norm. This
modification does not change the solutions of the optimization problem remark-
ably, but it simplifies further analysis.

The choice of the reaction progress variables is no longer arbitrary in the for-
mulation (4.3), but it is determined by the splitting up of the state variable c(t)
into fast (cf(t)) and slow (cs(t)) variables: The slow variables cs are the reaction
progress variables and parameterize the SIM Wε. It has to be mentioned here
that this is not absolutely necessary, since the optimization problem delivers also
results for another choice of the reaction progress variables (see e.g. Subsection
4.3.2). However, if the slow variables are known, such variables are chosen to
be the reaction progress variables because model reduction wants to describe the
long-term dynamics of the system and this is why the slow variables should pa-
rameterize the SIM Wε.
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In previous publications [22, 25, 26, 33] the general optimization problem (4.3) has
been formulated with t∗ = t0 = 0 and for the numerical computations tf has been
chosen ‘large enough’ for the trajectory to be close to the chemical equilibrium
point. The numerical value t0 = 0 is chosen arbitrary as the used ODE systems
are autonomous. Additionally, in contrast to the forward formulation in the
present chapter the backward formulation t∗ = tf (= 0) is used. In fact this is
the more natural formulation for the identification of a trajectory on the SIM
which stays on this manifold during backward time evolution. The first case with
t∗ = t0 = 0 is referred to as the forward mode and the latter (t∗ = tf = 0) as the
reverse mode. Both modes can be seen as special cases of the general formulation
(4.3).

4.2 Linear Model

A very simple two-dimensional linear model is given by the following singular
perturbation problem

dy1(t)

dt
= −λy1(t) (4.5a)

ε
dy2(t)

dt
= (−ελ− 1 + ε)y2(t) (4.5b)

which is written as a slow system (2.3) (y1 equates to the slow variable cs and y2

to the fast one cf). Here it has to be mentioned that the time t in (4.5) equates to
the rescaled time τ in the formulation (2.3). Furthermore, 0 < ε� 1 and λ > 0.
In the further course of this section as well as in Subsection 4.3.1 and 4.3.2 the
time t will always denote this rescaled time τ . By defining γ := 1

ε
− 1 the system

(4.5) can be rewritten as

ẏ1(t) = −λy1(t) (4.6a)
ẏ2(t) = (−λ− γ) y2(t) (4.6b)

where γ > 0 measures the spectral gap (stiffness) of the system (the stiffness of
the model grows with γ). The system matrix B (see (4.7)) defines two eigenspaces:
The fast eigenspace Λf (corresponding to the eigenvalue −(λ + γ)) and the slow
eigenspace Λs (corresponding to the eigenvalue −λ). In linear models the SIM is
given by the eigenspace of the slowest eigenvalue.

In Figure 4.1 the vector field of the linear model (4.6) is plotted for two different
values of γ: The first case is referred to γ = 1.0 and the second case to γ = 9.0.
It is easy to see that the slow eigenspace Λs (red line) (here equal to the SIM
Wε) of the second case is much more attractive than the slow eigenspace (SIM)
of the first case.
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Figure 4.1: Vector fields of System (4.6) for two different values of γ. In
both cases λ is chosen as λ = 1. The green line shows the fast eigenspace
Λf and the red line the slow one Λs (here the SIM is the slow eigenspace).

By using a rotation matrix R =

(
cosα − sinα
sinα cosα

)
and y (t) = R−1x (t), the

System (4.6) is transformed to ẋ(t) = RBR−1x(t) with

B =

(
−λ 0
0 −λ− γ

)
. (4.7)

By using α = π
4
for example, the matrix A := RBR−1 yields

Ã :=

−λ− γ

2

γ

2γ

2
−λ− γ

2

 . (4.8)

Thus the SIM Wε (slow eigenspace) is the first bisectrix x1 ≡ x2 (i.e. Wε =
{(x1, x2) ∈ R2 | x1 = hε(x2) = x2, x1 ∈ K}).

In Figure 4.2 the vector fields of the linear model ẋ(t) = Ãx(t) with Ã as in (4.8)
(i.e. α = π

4
) are shown again for two different values of γ. Again one can see

that the SIM in Figure 4.2(b) is much more attractive than the SIM in Figure
4.2(a), which is caused by the different values of γ and so by the spectral gap of
the system.
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Figure 4.2: Vector fields of System ẋ(t) = Ãx(t) with α = π
4 for two

different values of γ. In both cases λ is chosen as λ = 1. The red line shows
the slow eigenspace Λs (i.e. the SIM).

Theoretical Results

One of the central results of this thesis is the proof of the following conjecture of
Dirk Lebiedz:

Theorem 4.2.1
Let ẋ(t) =

(
ẋ1(t), ẋ2(t)

)T
= Ãx(t) be a two-dimensional linear model, Ã as in

(4.8) with distinct (real-valued) eigenvalues −(λ + γ) and −λ, γ, λ ∈ R+, fast
and slow eigenspaces Λf and Λs corresponding to −(λ+ γ) and −λ, respectively.
Let x∗ be the optimal solution of

min
x(t)

∫ tf

t0

∥∥∥ÃÃx(t)
∥∥∥2

2
dt

s.t. ẋ(t) = Ãx(t)

xi(tf) = xtfi , either i = 1 or i = 2.

Then for all γ > 0, λ > 0, and t0 < tf it holds

lim
t0→−∞

inf
b∈Λs

‖x∗(tf)− b‖2 = 0.
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Proof. Let w.l.o.g. be λ = 1 and the second variable is chosen as progress variable
i.e. x2(tf) = xtf2 . The objective criterion Φ(x(t)) can be computed as

∥∥∥ÃÃx(t)
∥∥∥2

2
=(x1(t))2

(
1 + 2γ + 3γ2 + 2γ3 +

γ4

2

)

+ (x2(t))2

(
1 + 2γ + 3γ2 + 2γ3 +

γ4

2

)
+ x1(t) x2(t)

(
−4γ − 6γ2 − 4γ3 − γ4

)
.

(4.9)

The general solution of the ODE ẋ = Ãx is

x1(t) = c1e−t + c2e(−1−γ)t (4.10a)

x2(t) = c1e−t − c2e(−1−γ)t. (4.10b)

Solution (4.10) is substituted into criterion (4.9) and integration over time yields
the objective function∫ tf

t0

∥∥∥ÃÃx(t)
∥∥∥2

2
dt =

∫ tf

t0

[
2c2

1e
−2t +

(
2 + 8γ + 12γ2 + 8γ3 + 2γ4

)
c2

2e(
−1−γ)2t

]
dt

= c2
1

(
e−2t0 − e−2tf

)
− ξc2

2

(
e(−1−γ)2t0 − e(−1−γ)2tf

)
(4.11)

with ξ = 2+8γ+12γ2+8γ3+2γ4

−2−2γ
< 0. An expression c1(c2) for c1 as a function of c2 can

be calculated from (4.10b) which only depends on c2 because of the fixed final
value of x2(tf):

x2(tf) = c1e−tf − c2e(−1−γ)tf =⇒ c1(c2) =
x2 (tf) + c2e(−1−γ)tf

e−tf
.

This formula can be used to eliminate c1 from (4.11) leading to an expression
h(c2) only depending on c2 (and t0, tf, γ which are assumed to be fixed at the
moment)

h (c2) :=

(
xtf2

)2

e−2t0

e−2tf
+

e(−1−γ)2tfe−2t0

e−2tf
c2

2 +
2xtf2 e(

−1−γ)tfe−2t0

e−2tf
c2

−
(
xtf2

)2

− e(−1−γ)2tfc2
2 − 2xtf2 e(

−1−γ)tfc2

− ξe(−1−γ)2t0c2
2 + ξe(−1−γ)2tfc2

2 =

∫ tf

t0

∥∥∥ÃÃx(t)
∥∥∥2

2
dt,
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which should be minimal for identification of the optimal c2. The first order
necessary condition for a minimum dh(c2)

dc2
= 0 gives a solution

ĉ2 =
xtf2 e(

−1−γ)tf − xtf2 e(
1−γ)tfe−2t0

e−2γtfe−2t0 − ξe(−1−γ)2t0 + (ξ − 1)e(−1−γ)2tf
.

Checking the second-order sufficient conditions

d2h

dc2
2

≡ 2e−2γtf
(
e−2t0 − e−2tf

)
+ 2ξ

(
e−2tfe−2γtf − e−2t0e−2γt0

)
> 0 ∀c2, tf > t0

guarantees ĉ2 being a minimum.
The solution ĉ2 and c1(ĉ2) are substituted in (4.10a) and evaluated at fixed final
time tf yielding an expression for x1(tf) additionally depending on γ and t0

x1(tf) = c1(ĉ2)e−tf + ĉ2e(−1−γ)tf =
xtf2 + ĉ2e(−1−γ)tf

e−tf
e−tf + ĉ2e(−1−γ)tf

= xtf2

1 +

 2e(−1−γ)2tf − 2e−2γtfe−2t0

e−2γtfe−2t0 − ξe(−1−γ)2t0 + (ξ − 1) e(−1−γ)2tf


︸ ︷︷ ︸

=:χ


= xtf2

1 +

 2e(−1−γ)2tf

e−2γtfe−2t0 − ξe(−1−γ)2t0 + (ξ − 1) e(−1−γ)2tf

− 2e−2γtf

e−2γtf − ξe−2γt0 + (ξ − 1) e(−1−γ)2tfe2t0




(4.12)

with error term χ quantifying the deviation from the slow eigenspace x1 ≡ x2.
Finally in the limit t0 → −∞ it can be seen that

lim
t0→−∞

x1(tf) = xtf2

meaning the slow eigenspace x1(t) = x2(t) (i.e. the SIM Wε = {(x1, x2) ∈ R2 |
x1 = hε(x2) = x2, x1 ∈ K}) is identified by a solution of the optimization
problem. 2

In Figure 4.3 the error term χ is plotted. It illustrates that for increasing spectral
gap γ and increasing time interval [t0, tf] the approximation of the SIM improves
while the approximation error decreases exponentially.
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Figure 4.3: The error term χ in (4.12) plotted against t0 and γ with
tf = 0.

Numerical Results

Figure 4.4 and Figure 4.5 depict numerical solution results of problem (4.3) with
the linear model

ẋ(t) =

−λ− γ

2

γ

2γ

2
−λ− γ

2

x(t) (4.13)

and small time scale separation γ = 0.2 and γ = 1.0 respectively. Solutions for the
forward mode and the reverse mode are shown. Figures 4.4(b)–(f) show five plots
computed with the reverse mode with different time intervals. In all cases x2 is
chosen as reaction progress variable (parameterization of the SIM Wε) and fixed
at four different values xtf2 = 2.0, 1.5, 1.0, 0.5 for each of which the optimization
problem is solved to obtain the coordinate of the other variable x1(tf) supposed to
be located on the SIM. The red curve is the SIM (slow eigenspace) which is given
as the first bisectrix (x1 = hε(x2) = x2) and the blue curves are the trajectories
integrated numerically crossing those points (blue circles) that are computed as
solutions of the optimization problem. The red dot represents the equilibrium
point (stable fixed point). Obviously the reverse mode gives solutions that are
significantly closer to the SIM than the forward mode (Figure 4.4(a)) and the
solutions of the reverse mode improve with increasing time interval according to
the theoretical results. Figure 4.5 – where a larger spectral gap (γ = 1.0) is used
– shows similar results. Comparing Figure 4.4 and Figure 4.5 one can see that
the accuracy of approximation of the SIM improves with increasing spectral gap.
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(a) Forward mode: t0 = 0.0, tf = 10.0.
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(b) Reverse mode: t0 = −0.1, tf = 0.0.
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(c) Reverse mode: t0 = −1.0, tf = 0.0.
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(d) Reverse mode: t0 = −5.0, tf = 0.0.
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(e) Reverse mode: t0 = −10.0, tf = 0.0.
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(f) Reverse mode: t0 = −21.0, tf = 0.0.

Figure 4.4: Numerical results for the linear model (4.13) with γ = 0.2,
(a) forward mode: x2(t0) = xt02 , and (b), (c), (d), (e) and (f) reverse mode:
x2(tf) = xtf2 .
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(a) Forward mode: t0 = 0.0, tf = 10.0.
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(b) Reverse mode: t0 = −17.0, tf = 0.0.

Figure 4.5: Numerical results for the linear model (4.13) with γ = 1.0,
(a) forward mode: x2(t0) = xt02 , and (b) reverse mode: x2(tf) = xtf2 .
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4.3 Non-Linear Models

4.3.1 Davis–Skodje Problem

The Davis–Skodje model (4.14) [8, 36] is widely used for analysis and performance
tests of model reduction techniques supposed to identify SIMs

dx1

dt
= −x1 (4.14a)

dx2

dt
= −γx2 +

(γ − 1)x1 + γx2
1

(1 + x1)2
(4.14b)

where γ > 1 is a measure for the spectral gap (stiffness) of the system. By using
ε := 1

γ
the system has the following singular perturbation form

dx1

dt
= −x1

ε
dx2

dt
= −x2 +

x1

1 + x1

− εx1

(1 + x1)2
.

Typically model reduction algorithms show a good performance for large val-
ues of γ which represent a large time scale separation. Small values of γ im-
pose a significantly harder challenge on the computation of the SIM Wε. For
reasons of adjustable time scale separation and analytically computable SIM
(x2 = hε(x1) = x1

1+x1
) the Davis–Skodje model is widely used for testing nu-

merical model reduction approaches. Analytical and numerical results for the
variational approach with the Davis–Skodje model are provided.

Figure 4.6 shows the vector field of the Davis–Skodje problem (4.14) with two
different values of γ. Obviously the SIM Wε of the system that includes the
spectral gap γ = 10.0 > 2.0 is much more attractive because of the larger time
scale separation.
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Figure 4.6: Vector fields of System (4.14) for two different values of γ.
The red line shows the analytically calculated SIM Wε = {(x1, x2) ∈ R2 |
x2 = hε(x1) = x1

1+x1
, x1 ∈ K}.

Theoretical Results

Similar results as in the linear case can be obtained for the non-linear Davis–
Skodje model.

Theorem 4.3.1
Let ẋ(t) =

(
ẋ1(t), ẋ2(t)

)T
=
(
f1

(
x(t)

)
, f2

(
x(t)

))T
= f

(
x(t)

)
be the Davis–

Skodje model (4.14), the slow invariant manifold defined by Wε := {(x1, x2) ∈
R2 | x2 = hε(x1) = x1

1+x1
, x1 ∈ K}, and x∗ the optimal solution of

min
x(t)

∫ tf

t0

∥∥∥Jf (x(t)
)
· f
(
x(t)

)∥∥∥2

2
dt

s.t. ẋ(t) = f
(
x(t)

)
x1(tf) = xtf1

Then for all γ > 1 and t0 < tf it holds

lim
t0→−∞

inf
b∈Wε

‖x∗(tf)− b‖2 = 0.
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Proof. The Jacobian of f is given by

Jf
(
x(t)

)
=

 −1 0
(1 + γ)x1(t) + γ − 1(

1 + x1(t)
)3 −γ

 .

The criterion Φ
(
x(t)

)
=
∥∥∥Jf (x(t)

)
· f
(
x(t)

)∥∥∥2

2
in the objective function can be

calculated explicitly as

Φ
(
x(t)

)
=
(
x1(t)

)2
+ γ4

(
x2(t)

)2
+

(
x1(t)

)2 (
1− 2γ2 + γ4

)(
1 + x1(t)

)6

+

(
x1(t)

)3 (−2− 2γ2 + 4γ4
)(

1 + x1(t)
)6 +

(
x1(t)

)4 (
1 + 2γ2 + 6γ4

)(
1 + x1(t)

)6

+

(
x1(t)

)5 (
2γ2 + 4γ4

)(
1 + x1(t)

)6 +

(
x1(t)

)6
γ4(

1 + x1(t)
)6

− x1(t)x2(t)

(
2γ2x1(t)− 2γ2 + 2γ4 + 4γ4x1(t) + 2γ4

(
x1(t)

)2
)

(
1 + x1(t)

)3 .

An analytical solution of model (4.14) will be computed in the following. The
first differential equation yields x1(t) = c1e−t as the general solution. Equation
(4.14b) is an inhomogeneous first order linear ODE and the method of variation
of constants gives x2(t) = x2,hom(t) + x2,part(t). The homogeneous equation is
solved by x2,hom(t) = c2e−γt as ẋ2,hom(t) = −γc2e−γt = −γx2,hom(t). To determine
x2,part(t) the equation

e−γtċ2(t) =
(γ − 1) c1e−t + γc2

1e−2t

(1 + c1e−t)
2

has to be solved for c2:

c2(t) =

∫
ċ2(t) dt =

∫
(γ − 1) c1e−t + γc2

1e−2t

e−γt (1 + c1e−t)
2 dt =

c1eγt

c1 + et
.

Therefore the missing expression is

x2,part(t) = e−γt
c1eγt

c1 + et
=

c1

c1 + et

and the full solution of the ODE is given by

x1(t) = c1e−t (4.16a)

x2(t) = c2e−γt +
c1

c1 + et
. (4.16b)
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Now the criterion Φ is integrated over time using (4.16). In the next formula ri,
i = 1, 2 represents a “rest” – all terms independent of x2(t) hence also independent
of c2 which annihilate after differentiation with respect to c2 afterwards. Making
use of c1 = x1(tf)etf = xtf1 etf due to (4.16a) yields an expression for the objective
function only depending on c2:

h(c2) := r1 +

∫ tf

t0

γ4
(
x2(t)

)2 dt

−
∫ tf

t0

x1(t)x2(t)
2γ2x1(t)− 2γ2 + 2γ4 + 4γ4x1(t) + 2γ4

(
x1(t)

)2(
1 + x1(t)

)3 dt

= r2 + c2
2

(
1

2
γ3e−2γt0 − 1

2
γ3e−2γtf

)
+ c2

∫ tf

t0

[
2γ4c1e−γt

c1 + et
− 2γ2c1e(−1−γ)t c1e−t − 1 + γ2

(
1 + 2c1e−t + c2

1e−2t
)

(1 + c1e−t)3

]
︸ ︷︷ ︸

=:ϕ(t)

dt

=

∫ tf

t0

∥∥∥Jf (x(t)
)
· f
(
x(t)

)∥∥∥2

2
dt.

The necessary first-order condition for a minimum is applied. Setting dh(c2)
dc2

= 0
results in

č2 :=
−
∫ tf
t0
ϕ(t) dt

γ3e−2γt0 − γ3e−2γtf
.

The second-order check
d2h

dc2
2

≡ γ3e−2γt0 − γ3e−2γtf > 0 ∀c2, t0 < tf, γ > 1

assures č2 being a minimum.
An expression for x2(tf) can be derived by substituting c1 and č2 in (4.16b):

x2 (tf) =
−
∫ tf
t0
ϕ(t) dt

γ3e−2γt0 − γ3e−2γtf
e−γtf +

xtf1
xtf1 + 1

.

The proof for the relation

lim
t0→−∞

−
∫ tf
t0
ϕ(t) dt

γ3e−2γt0 − γ3e−2γtf
e−γtf = 0 (4.17)

will be given in the following Lemma 4.3.2. According to (4.17) it holds

lim
t0→−∞

x2(tf) =
xtf1

xtf1 + 1

which is the analytic expression for the SIM Wε of the Davis–Skodje system (see
[8]). This completes the proof. 2
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Lemma 4.3.2
Under the conditions of Theorem 4.3.1 Equation (4.17) holds.

Proof. First the numerator and the denominator of the following expression is
denoted by a(t0) and b(t0), respectively:

−
∫ tf
t0
ϕ(t) dte−γtf

γ3e−2γt0 − γ3e−2γtf
=:

a(t0)

b(t0)
.

It holds that b(t0) → ∞ for t0 → −∞. For the numerator a(t0) two cases are
possible:

• If a(t0) 9 ±∞ for t0 → −∞ then
a(t0)

b(t0)
→ 0 for t0 → −∞ and (4.17) holds.

• If a(t0)→ ±∞ for t0 → −∞ then l’Hospital’s rule is apllied:

d
dt0
a(t0)

d
dt0
b(t0)

=
ϕ(t0)e−γtf

−2γ4e−2γt0
. (4.18)

The expression ϕ(t0) has the following form which is split up into ϕ1(t0)
and ϕ2(t0):

ϕ(t0) =
2γ4c1e−γt0

c1 + et0︸ ︷︷ ︸
=:ϕ1(t0)

− 2γ2c1e(−1−γ)t0
c1e−t0 − 1 + γ2

(
1 + 2c1e−t0 + c2

1e−2t0
)

(1 + c1e−t0)3︸ ︷︷ ︸
=:ϕ2(t0)

.

From Equation (4.18) only the following expression is considered because
of dependency on t0:

ϕ(t0)

e−2γt0
=
ϕ1(t0)

e−2γt0
− ϕ2(t0)

e−2γt0
.

By considering the first term it is not difficult to see the convergence to 0
for t0 → −∞:

ϕ1(t0)

e−2γt0
=

2γ4c1e−γt0

(c1 + et0) e−2γt0
=

2γ4c1

(c1 + et0) e−γt0

=
2γ4c1

c1e−γt0 + e(1−γ)t0
→ 0 for t0 → −∞.

The second term requires a little more analysis to show convergence to 0
for t0 → −∞:

ϕ2(t0)

e−2γt0
= 2γ2c1e(−1−γ)t0

c1e−t0 − 1 + γ2
(
1 + 2c1e−t0 + c2

1e−2t0
)

(1 + c1e−t0)3e−2γt0

= 2γ2c1

c1e−t0 − 1 + γ2
(
1 + 2c1e−t0 + c2

1e−2t0
)

(1 + c1e−t0)3e(1−γ)t0
.
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Hereof only e−t0
(1+c1e−t0 )3e(1−γ)t0 and e−2t0

(1+c1e−t0 )3e(1−γ)t0 has to be considered which
are denoted by Φ1(t0) and Φ2(t0), respectively. These two terms are con-
sidered separately:

lim
t0→−∞

Φ1(t0) := lim
t0→−∞

e−t0

(1 + c1e−t0)3e(1−γ)t0
= lim

t0→−∞

e(−2+γ)t0

(1 + c1e−t0)3
= 0

⇐⇒ lim
t0→−∞

(1 + c1e−t0)3

e(−2+γ)t0
=∞. (4.19)

To prove (4.19) the expression is split up into four terms, which are consid-
ered separately for t0 → −∞:

(1 + c1e−t0)3

e(−2+γ)t0
=

1

e(−2+γ)t0
+

3c1e−t0

e(−2+γ)t0
+

3c2
1e−2t0

e(−2+γ)t0
+

c3
1e−3t0

e(−2+γ)t0

= e(2−γ)t0︸ ︷︷ ︸
→0,1,or+∞

+ 3c1e(1−γ)t0︸ ︷︷ ︸
→+∞

+ 3c2
1e
−γt0︸ ︷︷ ︸

→+∞

+ c3
1e

(−1−γ)t0︸ ︷︷ ︸
→+∞

.

This confirms (4.19) and hence also lim
t0→−∞

Φ1(t0) = 0.

For the second term Φ2(t0) the same procedure is done:

lim
t0→−∞

Φ2(t0) := lim
t0→−∞

e−2t0

(1 + c1e−t0)3e(1−γ)t0
= lim

t0→−∞

e(−3+γ)t0

(1 + c1e−t0)3
= 0

⇐⇒ lim
t0→−∞

(1 + c1e−t0)3

e(−3+γ)t0
=∞. (4.20)

To prove (4.20) the expression is split up into four terms again, which are
considered separately for t0 → −∞:

(1 + c1e−t0)3

e(−3+γ)t0
=

1

e(−3+γ)t0
+

3c1e−t0

e(−3+γ)t0
+

3c2
1e−2t0

e(−3+γ)t0
+

c3
1e−3t0

e(−3+γ)t0

= e(3−γ)t0︸ ︷︷ ︸
→0,1,or+∞

+3c1 e(2−γ)t0︸ ︷︷ ︸
→0,1,or+∞

+ 3c2
1e

(1−γ)t0︸ ︷︷ ︸
→+∞

+ c3
1e
−γt0︸ ︷︷ ︸

→+∞

.

This confirms (4.20) and hence also lim
t0→−∞

Φ2(t0) = 0.

Consequently it follows that lim
t0→−∞

ϕ2(t0)
e−2γt0

= 0, lim
t0→−∞

ϕ(t0)
e−2γt0

= 0, and finally

lim
t0→−∞

a(t0)
b(t0)

= 0 what completes the proof.

2
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Numerical Results

Numerical results in analogy to those of the linear model (Section 4.2) are shown
in Figure 4.7. Here the Davis–Skodje test problem is used for computations with
the forward mode (Fig. 4.7(a), 4.7(c)) and the reverse mode (Fig. 4.7(b), 4.7(d)).
Here x1 is the reaction progress variable (SIM parameterization) and fixed at sev-
eral values between 0.2 and 2.0 for the computation of SIM points as solutions
of the optimization problem. The spectral gap parameter is chosen as γ = 1.2
and γ = 2.0, respectively. The red curve represents the analytically calculated
SIM Wε = {(x1, x2) ∈ R2 | x2 = hε(x1) = x1

1+x1
, x1 ∈ K}, the blue curves are

the trajectories integrated numerically from those points that are the solutions of
the optimization problem (blue circles) and the red dot represents the chemical
equilibrium point.

Forward mode solutions show a larger deviation from the SIM and lack invariance
whereas reverse mode solutions are highly accurate representations of the SIM.
Again the accuracy of approximation of the SIM improves with increasing time
scale separation (i.e. with increasing γ). As in the linear case numerical solutions
confirm the theoretical results.

In the following plot (Figure 4.8) the reaction progress variable xtf1 is fixed at
xtf1 = 0.5 and the optimization problem is solved for different values of γ by using
always the same time interval tf− t0 = 7.5 · 10−5. Then, log(γ) is plotted against
the logarithmic error log(|hε(0.5) − x∗|) with hε(0.5) = 1

3
(x2 = hε(x1) = x1

x1+1
)

and x∗ being the optimal solution of the optimization problem (4.3) (using the
Davis–Skodje model (4.14)).

In Figure 4.8 one can see that the approximation of the SIMWε = {(x1, x2) ∈ R2 |
x2 = hε(x1) = x1

1+x1
, x1 ∈ K} improves with increasing spectral gap parameter γ

for xtf1 = 0.5. Furthermore, the slope of the line through the points is ∼ −2 what
implicates the error |hε(0.5)− x∗| being proportional to 1

γ2 .
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(a) Forward mode: t0 = 0.0, tf = 10.0,
γ = 1.2.
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(b) Reverse mode: t0 = −8.0, tf = 0.0,
γ = 1.2.
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(c) Forward mode: t0 = 0.0, tf = 10.0,
γ = 2.0.
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(d) Reverse mode: t0 = −8.0, tf = 0.0,
γ = 2.0.

Figure 4.7: Results for the Davis–Skodje test problem with (a), (c) forward
mode: x1 (t0) = xt01 , and (b), (d) reverse mode: x1 (tf) = xtf1 . The spectral
gap parameter is chosen as γ = 1.2 and γ = 2.0 respectively.
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Figure 4.8: For different values of γ, log(γ)
is plotted against log(|hε(0.5)− x∗|) for xtf1 = 0.5.
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4.3.2 Semenov Model

Another two-dimensional non-linear test model is the Semenov model for thermal
explosions [1, 2, 16, 35, 37] which is given by the following singular perturbation
problem

ε
dx
dt

=
(
yq(x)− xδ

)
(4.21a)

dy
dt

= −yq(x) (4.21b)

with q(x) = exp
(
x/(1 + βx)

)
, δ = 1, and β = 0.31. System (4.21) possesses a

unique global SIM Wε for ε < 1 with the equilibrium in the origin.

Figure 4.9 depicts numerical solution results of the optimization problem (4.3)
with model (4.21) and two different values of ε. In contrast to the formulation
(4.3) here the fast variable x is chosen as reaction progress variable in order to
compare the results with the plots given in [2]. Figures 4.9(a) and 4.9(b) show
that the approximation to the SIM is more accurate with decreasing ε (forward
mode) what implicates an increasing time scale separation and Figures 4.9(c) and
4.9(d) demonstrate again that the approximation becomes better in the reverse
mode formulation with increasing time interval. Obviously – comparing Figure
4.9(b) and Figure 4.9(d) – the reverse mode gives solutions that are significantly
closer to the SIM (less inconsistent) than the solutions of the forward mode.
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(a) Forward mode: t0 = 0.0, tf = 10.0,
ε = 10−3.

0 10 20 30
0

0.5

1

1.5

2

x

y

(b) Forward mode: t0 = 0.0, tf = 10.0,
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(c) Reverse mode: t0 = −0.04, tf = 0.0,
ε = 10−2.
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(d) Reverse mode: t0 = −0.4, tf = 0.0,
ε = 10−2.

Figure 4.9: Numerical solution results of the optimization problem (4.3)
with model (4.21) (Semenov) and two different values of ε.
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4.3.3 Model Hydrogen Combustion Reaction Mechanism

The first more realistic chemical mechanism used for the computations in this
work is a six-species reaction mechanism without temperature dependency (see
Table 3.1). The singular perturbed form of the corresponding ODE system is not
known (note that it is assumed that there exists a diffeomorphism that transforms
the ODE system into a singularly perturbed system) and this is why there is no
accessible separation into fast and slow variables/species. The reaction progress
variable is chosen more or less arbitrary (how to choose the reaction progress vari-
able(s) depends on a detailed knowledge of chemical properties or on monotony
properties of the parameterizing species along the SIM).

First numerical results for this mechanism are shown using the entropy production
(3.2) as criterion in the optimization problem. Figure 4.10 depicts the solutions
using the forward mode formulation whereas in Figure 4.11 the solutions of the
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Figure 4.10: Numerical results for a 1-D SIM of the model hydrogen com-
bustion reaction mechanism computed with the forward mode formulation
and entropy production (3.2) as criterion. t0 = 0.0, tf = 1.0.

optimization problem including the reverse mode formulation are presented. In
both cases cH2O is chosen as reaction progress variable and fixed at different val-
ues between 0.1 and 0.5. For a good visualization cH2O is plotted against the
concentrations of the other (free) species in a way that the six-dimensional phase
space can be visualized in five two-dimensional plots. Again the red dots repre-
sent the chemical equilibrium and the blue circles are the solution points of the
optimization problem. The blue curves are the trajectories crossing the corre-
sponding solution point. In subsequent figures this will always be the case if not
otherwise stated.
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Figure 4.11: Numerical results for a 1-D SIM of the model hydrogen com-
bustion reaction mechanism computed with the reverse mode formulation
and entropy production (3.2) as criterion. t0 = −0.0305, tf = 0.0.

As one can see the solutions of the reverse mode formulation are much closer to
invariance than the solutions of the forward mode formulation but they are still
fairly inconsistent.

As this criterion has fallen in disuse, the focus is now on the following one:

Φ
(
c(t)
)

= ‖Jf (c) · f‖2
2. (4.22)

First, numerical results of the optimization problem including criterion (4.22) are
shown using the forward mode formulation (Figure 4.12).
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Figure 4.12: Numerical results for a 1-D SIM of the model hydro-
gen combustion reaction mechanism computed with forward mode, i.e.
cH2O (t0) = ct0H2O. t0 = 0.0, tf = 1.0. Arbitrary trajectories relax on the
manifold (colored, dashed).
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Here the reaction progress variable is fixed at different values between 0.01 and
0.65. The colored dashed curves are arbitrary trajectories starting from arbitrary
initial values. These trajectories converge to the SIM and then stay close to it
during convergence to chemical equilibrium. In comparison to Figure 3.3, where
the same results are depicted with the difference that the Euclidean norm of the
objective function is not squared (3.5) one can see that the solutions are nearly
the same but still significantly inconsistent.

Now the results of the new reverse mode formulation are considered. Figure 4.13
shows the results of the optimization problem including this new formulation for
a final time tf = 0.0 and an initial time of t0 = −0.001.
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Figure 4.13: Numerical results for a 1-D SIM of the model hydro-
gen combustion reaction mechanism computed with reverse mode, i.e.
cH2O (tf) = ctfH2O. t0 = −0.001, tf = 0.0. Arbitrary trajectories relax on
the manifold (colored, dashed).

The solutions are less inconsistent than the results of the forward mode formula-
tion (Figure 4.12).

By decreasing t0 to t0 = −0.1 the solutions show a decreasing inconsistency so
that it seems that they characterize the SIM exactly. However it can also be seen
that the trajectories starting from the solution points going backwards in time
leave the SIM after a very short time which is caused by the fact that the solution
points do not identify the SIM exactly.
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Figure 4.14: Numerical results for a 1-D SIM of the model hydro-
gen combustion reaction mechanism computed with reverse mode, i.e.
cH2O (tf) = ctfH2O. t0 = −0.1, tf = 0.0. Arbitrary trajectories relax on
the manifold (colored, dashed).

If t0 is chosen as t0 = −0.3 it can be seen in Figure 4.15 that the trajectories
going backwards in time from the solution points stay very close to the SIM for
a longer time before they diverge from it. This means that the solution points
characterized by blue circles are closer to the SIM than in the cases before.

In Figure 4.16 t0 is decreased to t0 = −0.5 and this implicates the solution points
lying closer to the SIM. This can be seen by the trajectories going backwards in
time.

Focusing on Figure 4.17 where t0 is chosen as t0 = −0.75 it can be supposed
that the SIM is characterized exactly if an infinite time horizon is chosen (tf = 0,
t0 = −∞) as proved in the two-dimensional linear case and in the Davis–Skodje
test model.
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Figure 4.15: Numerical results for a 1-D SIM of the model hydro-
gen combustion reaction mechanism computed with reverse mode, i.e.
cH2O (tf) = ctfH2O. t0 = −0.3, tf = 0.0. Arbitrary trajectories relax on
the manifold (colored, dashed).
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Figure 4.16: Numerical results for a 1-D SIM of the model hydro-
gen combustion reaction mechanism computed with reverse mode, i.e.
cH2O (tf) = ctfH2O. t0 = −0.5, tf = 0.0. Arbitrary trajectories relax on
the manifold (colored, dashed).
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Figure 4.17: Numerical results for a 1-D SIM of the model hydro-
gen combustion reaction mechanism computed with reverse mode, i.e.
cH2O (tf) = ctfH2O. t0 = −0.75, tf = 0.0. Arbitrary trajectories relax on
the manifold (colored, dashed).
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As mentioned above this mechanism possesses four degrees of freedom. By fixing
two variables as reaction progress variables there are still two degrees of freedom
left for the optimization. This is why a two-dimensional manifold can also be
computed. Figure 4.18 shows the results of a two-dimensional SIM computed
with the reverse mode formulation and criterion (4.22). As reaction progress
variables cH2O and cH2 are chosen.

0

0.2

0.4

0.6

0.8 0

0.2

0.4

0.6

0.8

0

1

2

cH2OcH2

c
H

0

0.2

0.4

0.6

0.8 0

0.2

0.4

0.6

0.8
0

0.2
0.4

cH2OcH2
c
O

2

0

0.2

0.4

0.6

0.8 0
0.2

0.4
0.6

0.8

0

0.5

1

cH2O
cH2

c
O

0

0.2

0.4

0.6

0.8 0

0.2

0.4

0.6

0.8
0

0.2

0.4

cH2OcH2

c
O

H

Figure 4.18: Numerical results for a 2-D SIM of the model hydro-
gen combustion reaction mechanism computed with reverse mode, i.e.
cH2O (tf) = ctfH2O, cH2 (tf) = ctfH2

. t0 = −0.0001, tf = 0.0. Arbitrary tra-
jectories relax on the manifold (colored, dashed).

One point that can be seen in the three-dimensional plots is that the colored
dashed curves, which are again arbitrary trajectories starting from arbitrary
initial values, first converge to the two-dimensional and afterwards to the one-
dimensional SIM during convergence to chemical equilibrium.
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4.3.4 Simplified Realistic Mechanism

Numerical results for a simplified realistic (temperature dependent) mechanism
for hydrogen combustion are presented. The corresponding full mechanism was
originally published as a detailed hydrogen combustion mechanism by Li et al.
in [29]. Ren et al. simplified the mechanism and used it for testing their ICE-
PIC model reduction method in [34]. An adapted version of the simplified model
is used here. It consists of six chemical species (including the inert gas N2)
and twelve chemical reactions as given in Table 4.1. Element mass conservation
relations (equality constraints (4.3d)) for this mechanism are

cH + 2cH2 + cOH + 2cH2O = 0.15

cOH + cO + cH2O = 0.05

2cN2 = 1.6.

Table 4.1: Simplified realistic mechanism including six species.

Reaction A / cm,mol, s b Ea /
kJ
mol

O + H2 → H + OH 5.08× 1004 2.70 26.3
H + OH → O + H2 2.24× 1004 2.70 18.5
H2 + OH → H2O + H 2.16× 1008 1.50 14.4
H2O + H → H2 + OH 9.62× 1008 1.50 77.7
O + H2O → 2 OH 2.97× 1006 2.00 56.1
2 OH → O + H2O 2.94× 1005 2.00 −15.1
H2 + M → 2 H + M 4.58× 1019 −1.40 436.7
2 H + M → H2 + M 1.18× 1019 −1.40 0.7
O + H + M → OH + M 4.71× 1018 −1.00 0.0
OH + M → O + H + M 8.07× 1018 −1.00 428.2
H + OH + M → H2O + M 3.80× 1022 −2.00 0.0
H2O + M → H + OH + M 6.57× 1023 −2.00 499.4

The reaction rates k+ and k− can be computed by the Arrhenius law

k = AT b exp

(
− Ea

RT

)
where T is the temperature (here fixed at 3000K) and R is the gas constant
(R = 8.314472 J/(K ·mol)).
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The corresponding ODE system can be written as:

dcH
dt

= + k1cH2cO − k−1cHcOH

+ k2cH2cOH − k−2cHcH2O

+ 2k4cH2M0 − 2k−4c
2
HM0

− k5cHcOM0 + k−5cOHM0

− k6cHcOHM0 + k−6cH2OM0

dcH2

dt
=− k1cH2cO + k−1cHcOH

− k2cH2cOH + k−2cHcH2O

− 2k4cH2M0 + 2k−4c
2
HM0

dcOH

dt
= + k1cH2cO − k−1cHcOH

− k2cH2cOH + k−2cHcH2O

+ 2k3cOcH2O − 2k−3c
2
OH

+ k5cHcOM0 − k−5cOHM0

− k6cHcOHM0 + k−6cH2OM0

dcO
dt

=− k1cH2cO + k−1cHcOH

− k3cOcH2O + k−3c
2
OH

− k5cHcOM0 + k−5cOHM0

dcH2O

dt
= + k2cH2cOH − k−2cHcH2O

− k3cOcH2O + k−3c
2
OH

+ k6cHcOHM0 − k−6cH2OM0

dcN2

dt
= 0

with

M0 = cH + 2.5cH2 + cOH + cO + 12cH2O + cN2 .

Since a diffeomorphism that transforms the ODE system above in a singular per-
turbed form is not known, the choice of the reaction progress variable is again
more or less arbitrarily cH2O.
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In Figures 4.19 and 4.20 results for the computation of a one-dimensional SIM for
the hydrogen combustion mechanism are shown. Solutions of the optimization
problem (4.3) have been computed using the forward mode formulation and the
reverse mode formulation, respectively. The progress variable cH2O has been fixed
at different values between 0.0005 and 0.0180. Both forward mode and reverse
mode accurately approximate the SIM. Convergence of trajectories (dashed red
curves) started from arbitrary initial values (red circles) to the computed SIM is
visualized in Figures 4.19 and 4.20.
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Figure 4.19: Numerical results for a 1-D SIM of the simplified combustion
mechanism computed with forward mode, i.e. cH2O (t0) = ct0H2O. t0 = 0.0,
tf = 0.1, temperature T = 3000 K. Arbitrary trajectories relax on the
manifold (red, dashed).
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Figure 4.20: Numerical results for a 1-D SIM of the simplified com-
bustion mechanism computed with reverse mode, i.e. cH2O (tf) = ctfH2O.
t0 = −0.0004, tf = 0.0, temperature T = 3000 K. Arbitrary trajectories
relax on the manifold (red, dashed).
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Figure 4.21 shows a two-dimensional manifold computed with the reverse mode.
The reaction progress variables cH2O and cH2 are fixed and the SIM is approxi-
mated on a two-dimensional grid as a solution of a family of optimization prob-
lems. The computation of the two-dimensional manifold is possible because the
mechanism contains six species, three conservation equalities, and two fixed vari-
ables (progress variables). Hence there is still one degree of freedom left for the
optimization.

Again convergence of trajectories (red curves) started from arbitrary initial val-
ues (red circles) to the computed SIM is observed.
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Figure 4.21: Numerical results for a 2-D SIM of the simplified combustion
mechanism computed with reverse mode and cH2O(tf) and cH2(tf) chosen as
reaction progress variables, t0 = −5.0×10−7, tf = 0.0, constant temperature
T = 3000 K. The same arbitrary trajectories as in Fig. 4.20 are shown in
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Chapter 5

Summary and Outlook

5.1 Summary

Model reduction techniques have to be applied because it is computationally
highly expensive – despite growing computing power – to solve reactive flow sim-
ulation including large reaction mechanisms consisting of hundreds of species and
reactions. These reaction mechanisms can be described by systems of Ordinary
Differential Equations (ODEs). Model reduction approaches aim at a description
of the full reaction mechanism in a low-dimensional approximation via eliminat-
ing the fast modes of the system by enslaving them to the slow ones. If Slow
Invariant attracting Manifolds (SIMs) are present in the phase space of the dy-
namical system, most reduction methods try to identify and approximate those
SIMs, whose dynamics govern the long term dynamics of the full model. It fol-
lows that the full model can be reduced via approximating these SIMs. One of
these model reduction approaches via SIM computation is the trajectory-based
optimization approach, which is analyzed in this thesis.

Lebiedz formulated an optimization approach for approximating SIMs in 2004
[22], where the entropy production rate was used as criterion in the objective
function. Later other criteria have been developed involving the curvature of
the state vector. The constraints of the optimization problem include the sys-
tem dynamics (model equations) described by an ODE system, the fixation of
specified variables that parameterize the SIM at a specified point of time, and
additional constraints (e.g. mass conservation equations in chemical kinetics).
These parameterizing variables – naturally the slow variables of the system – are
called reaction progress variables. For the determination of a point of the SIM,
species reconstruction is used, which represents a function mapping such reaction
progress variables onto the full species composition by determining a point on
the SIM.
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In this work a new formulation of the optimization approach called reverse mode
is presented. The basic idea of this approach goes back to Dirk Lebiedz. In this
formulation the reaction progress variables are not fixed at the initial point of
time t0 (forward mode) but at the final point of time tf. Thus, more information
of the trajectory can be taken into account by decreasing t0. Numerical solutions
show a very good performance. Also analytical results are stated where it is
shown for a two-dimensional linear mechanism and the non-linear Davis–Skodje
problem (4.14) that solutions of the reverse mode characterize the SIM exactly
for an infinite time horizon of the optimization problem. These analytical results
achieved with the new reverse mode formulation are the central parts of this
thesis. For numerical computations a code – developed by Jochen Siehr – has
been adapted to the mechanisms.

5.2 Outlook

The main tasks of the project in future can be divided into two parts:

• First the application to large-scale mechanisms including dozens or even
hundreds of species.

• The second point is the extension of analytical results to the general linear
and non-linear case at a singularly perturbed system.

5.2.1 Application to Large-Scale Mechanisms

In order to apply the presented model reduction method to realistic large-scale
mechanisms the number of state variables of the used mechanisms has to be
increased rapidly. In this work chemical mechanisms including six species are
analyzed. As a first step a mechanism including nine species is already applied
but there are still problems by using the reverse mode. In contrast to this the
mechanism works stable by using the forward mode formulation.

Chemical mechanisms involve varying temperature while the reaction takes place.
Since the temperature is constant up to now additional constraints should be
added to the optimization problem in a way that the temperature can vary. Also
other physical aspects like pressure have to be regarded.

Another issue to apply large-scale mechanisms is the necessity of decreasing the
computing time via upgrading the code that is used for solving the optimization
problem.
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5.2.2 Extension of Analytical Results

A further focal point is the continuation of analytical calculations. As a first
step it is stated in this thesis that the solutions of the reverse mode formulation
characterize the SIM exactly for an infinite time horizon by using two simple test
problems. These results should be extended to the general linear case

ċ(t) = Ac(t), c(t) ∈ Rn, A ∈ Rn×n

where A is a matrix with eigenvalues −λ, −λ − γ1,. . . ,−λ − γn−1 with λ, γi >
0, i = 1, . . . , n− 1 and if possible to the general non-linear case

ċ(t) = f
(
c(t)
)
, c(t) ∈ Rn.

Furthermore there is a similarity to the Zero Derivative Principle (ZDP) (see Sec-
tion 1.2). First analysis of the linear mechanism (4.6) show that results improve
for an increasing derivation of the state vector in the objective function, i.e.∫ tf

t0

Φ
(
c(t)
)
dt =

∫ tf

t0

∥∥∥dnc
dtn
∥∥∥2

2
dt, n > 0.

This suggests a relation between the presented trajectory-based model reduction
method and the ZDP.
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