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Abstract

Simulation of chemically reacting flows modeled by dissipative dynamical systems with spectral

gaps requires an immense expenditure of time despite the continual advancement of digital com-

puting power. In order to decrease this effort to an acceptable level, model reduction methods

aim at a low-dimensional approximation of the underlying model equations. In this context, it is

observed that solution trajectories bundle near invariant manifolds of successively lower dimen-

sion during time evolution which is caused by the spectral gaps generating multiple time scales.

There are two different types of model reduction methods: (i) methods that use spatially homo-

geneous manifolds as low-dimensional approximation of the chemical reaction and then account

for reaction–transport coupling and (ii) methods that identify low-dimensional approximations

in terms of manifolds based on the full reaction–transport model. The focus of this work is on

a discussion of fundamental and unifying geometric and analytic issues of various approaches

to trajectory-based numerical approximation techniques of those spatially homogeneous mani-

folds that are in practical use for model reduction in chemical kinetics. In this context, two basic

concepts are pointed out reducing various model reduction approaches to a common denomina-

tor. Both of them are related in a variational boundary value problem viewpoint. Furthermore, a

fundamental study of the previously with respect to model reduction little researched unreduced

nonlinear reaction–transport model is presented, wherefrom suggestions arise for both the inser-

tion of the spatially homogeneous manifolds into the reaction–transport coupling (i) as well as

the approximation of manifolds based on the reaction–transport system (ii).





Kurzzusammenfassung

Die Simulation chemisch reaktiver Strömungen modelliert durch dynamische Systemen mit

spektralen Lücken erfordert trotz des ständigen Fortschritts von digitaler Rechenleistung einen

enormen Zeitaufwand. Um diesen Aufwand auf ein akzeptables Maß zu reduzieren, streben Mo-

dellreduktionsmethoden nach einer niedrigdimensionalen Beschreibung der zugrunde liegenden

Modellgleichungen. In diesem Zusammenhang wird beobachtet, dass Lösungstrajektorien im

zeitlichen Verlauf auf invariante Mannigfaltigkeiten von sukzessiv niedrigenderer Dimension

bündeln, was anhand der spektralen Lücken und den damit einhergehenden unterschiedlichen

Zeitskalen zu begründen ist. Zwei Verfahren werden dargestellt: (i) Methoden, die räumlich ho-

mogene Mannigfaltigkeiten als niedrigdimensionale Approximation der chemischen Reaktion

verwenden und sich anschließend um die Kopplung von Reaktion und Transport kümmern und

(ii) Methoden, die ausgehend von vollen Reaktions–Transport Modellen niedrigdimensionale

Beschreibungen in Form von Mannigfaltigkeiten identifizieren. Der Fokus dieser Arbeit liegt auf

der Diskussion grundlegender und vereinigender geometrischer und analytischer Aspekte ver-

schiedener Ansätze zur trajektorienbasierten numerischen Approximation solcher räumlich ho-

mogenen Mannigfaltigkeiten, die sich im praktischen Einsatz zur Modellreduktion in der chemi-

schen Kinetik befinden. In diesem Zusammenhang werden zwei Konzepte herausgearbeitet, die

einen gemeinsamen Nenner für verschiedene Modellreduktionsmethoden bilden. Diese werden

in einer variationellen Randwertproblembetrachtung zusammengeführt. Darüberhinaus wird ei-

ne grundlegende Untersuchung des bis heute bezüglich Modellreduktion noch kaum erforschten

nichtlinearen Reaktions–Transport Modells dargelegt, wodurch sich Anregungen sowohl für die

Einbringung der räumlich homogenen Mannigfaltigkeiten in die Reaktions–Transport Kopplung

als auch die Approximation von Mannigfaltigkeiten basierend auf dem Reaktions–Transport Sy-

stem ergeben.
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“Don’ts of Mathematical Modeling:

• Don’t believe that the model is the reality.

• Don’t extrapolate beyond the region of fit.

• Don’t distort reality to fit the model.

• Don’t retain a discredited model.

• Don’t fall in love with your model.”

—GOLOMB, S.W. [Gol71]
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Introduction

Energy is a central component of our life. Approximately 90 percent of the energy genera-

tion and therefore the main energy source of today’s world is ensured by combustion processes

which are, roughly speaking, a high temperature chemical reaction between a fuel and an ox-

idizer (typically air), usually a complicated sequence of elementary reactions. If the partici-

pating chemical species are not located within a flow field anyway, the reactions themselves

initiate a movement of those species. Therefore, combustion processes are the most important

respresentatives of chemically reacting flows. Examples include combustion engines in cars,

power plants, and firing, to name just a few (see Figure 0.1). Due to this high significance it

(a) Combustion engine (b) Power plant (c) Firing

Figure 0.1: Application examples for chemically reacting flows in form of combustion

processes.

is hardly surprising that research of combustion processes is indispensable, not least because of

economical and ecological needs. In this context, optimization or minimization of pollution call

for the quantitative assessment of these processes. This is a hard challenge due to complexity

caused by an interplay between convective and diffusive species transport and chemical reac-

tion processes and large size (dimension): realistic combustion mechanisms include up to 1200

chemical species and 7000 reactions [Wal99]. A further challenge arises from the multiple time

scales within the chemical reaction processes with time scales ranging from nanoseconds to sec-

onds inducing high stiffness of the kinetic model equations. On the basis of these difficulties,

simulation of combustion processes was not practicable about 50 years ago, partly because the

fastest supercomputers worldwide performed at ‘just’ 106 FLOPS1. Today, this is still a highly

time-consuming task despite continuing exponential growth of computer power (cf. Figure 0.2)
1FLOPS (floating-point operations per seconds) is a measure of computer performance.
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Introduction

and sophisticated mathematical algorithms for efficiently solving the underlying large systems

of partial differential equations. This is also made evident by the fact, that simulation of com-

Figure 0.2: Chronological development of the worldwide fastest supercomputers.2

bustion processes is listed in the ‘grand challenges’ for future computer generations [War99].

To lower computational complexity in the simulation of chemical combustion processes, model

reduction methods have to be applied aiming at a reduced description of the full model equations,

obviously including the most important information, which is usually given by the long-term

behavior and thus by the slow modes of the underlying combustion process. This approximation

to the original model can then be evaluated with lower accuracy but in significantly less time

allowing for a faster simulation and eventually a deeper insight into the underlying process. To

illustrate an idealized reduced model, we consider the following example.

Example 0.0.1 (Plant growth model). We consider a plant growth model (see [Vel09]) which is

intended to predict the time evolution of the overall biomass of a plant. Here, the system that is

supposed to be reduced is given by a potted plant (see Figure 0.3(a)) where non of the complex

details are required with the exception of the growth rate r. As a consequence, a corresponding

reduced system Zred is given by a single parameter in this model: Zred = {r}. Obviously, a lot of

information of the original system ‘potted plant’ is neglected in this reduction, but nevertheless

the reduced system contains all information necessary to answer the question about the time

evolution of the overall biomass.

There exists a large variety of model reduction methods for combustion processes with little or

no conspicuous relation to each other. The first methods were published over one hundred years
2URL: https://de.wikipedia.org/w/index.php?title=Supercomputer&oldid=146018665
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(a) Potted plant (b) The same potted plant written as reduced model

Figure 0.3: Example for model reduction.

ago, while the large majority has been developed during the last 25 years as depicted in Figure

0.4. This is exactly where this dissertation comes into play. Namely, we focus on the search

for broad common denominators and the discussion of fundamental and unifying geometric and

analytic issues of various approaches that are in practical use for model reduction in combustion

processes (a detailed description of those methods is found in Sections 2.1 and 2.2 of this work).

Two Ways to Obtain a Reduced Combustion Model

Until now, the usual procedure for obtaining a reduced combustion model has been to consider

the chemical reaction processes solely as a first step, that is to say, without accounting for the

transport processes in form of diffusion and/or convection. In this context, it is observed that

solution trajectories of chemical reaction processes modeled by (spatially homogeneous) dissi-

pative systems of ordinary differential equations bundle near invariant manifolds of successively

lower dimension during time evolution. This is caused by the previously mentioned multiple

time scales generating spectral gaps. Exactly this time scale separation of the model solution

vii
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1907 Quasi–Steady–State Assumption (QSSA) [Bod07, Bod13, CU13] (see 2.1.1)

1913 Partial Equilibrium Assumption (PEA) [MP13] (see 2.1.2)

1992 Intrinsic Low Dimensional Manifold (ILDM) [MP92] (see 2.1.3)

1999 Saddle Point Method (SPM) [DS99] (see 2.1.4)

2006

2005

2004

2007

2008

Trajectory Based Optimization Approach (TBOA) [Leb04] (see 2.2)

Zero–Derivative Principle (ZDP) [GKK+05, ZGK+09] (see 2.1.6)

Invar. Constr. Equilibr. Edge Preimage Curves (ICE-PIC) [RPV+06] (see 2.1.7)

Functional Truncation Equation (FET) [RT06, Rou12] (see 2.1.8)

Stretching–Based Diagnostics (SBD) [ACC+07, ACG+07] (see 2.1.9)

Flow Curvature Method (FCM) [GRC08] (see 2.1.10)

Figure 0.4: Timeline with representative model reduction methods for combustion processes ar-

ranged by year of first publication.

into fast and slow modes is the basis for most model reduction techniques, where the long time

scale system dynamics is approximated via elimination of the fast relaxing modes by enslaving

them to the slow ones. The outcome of this is in the ideal case an invariant manifold of slow mo-

tion (denoted as slow invariant manifold (SIM)) possessing the property of attracting system

trajectories from arbitrary initial values. Many model reduction methods make use of a species
reconstruction (cf. Section 1.3) for SIM computation which is provided by an implicitly de-

fined function mapping a subset of the chemical species of the full model—denoted by reaction
progress variables (RPVs)—onto the full species composition by determining a point on the

SIM. This species reconstruction as well as the attraction of SIMs is schematically illustrated in

Figure 0.5, where it can be seen that solution trajectories (black curves) emanating from differ-
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ent initial values (black crosses) relax onto a two-dimensional manifold (bounded red) before

approaching a one-dimensional one (red curve). Finally, the trajectories converge towards the

zero-dimensional manifold: the chemical equilibrium. As a consequence, the dynamics of re-

0D 

1D 

2D 

(a) Attracting SIMs

2D 

(b) Species reconstruction

Figure 0.5: Schematic illustration of attracting SIMs and species reconstruction.

duced reaction models proceed along those SIMs.

However, regarding Figure 0.6, originating from a combustion model at the top left, the re-

duced reaction model at the bottom right is reached via SIM computation (1b), but not yet the

desired reduced combustion model at the bottom left. For this purpose, a reintegration of the

(spatially inhomogeneous) transport processes into the reduced reaction model is required (1c).

Until about ten years ago, there was no appreciable publication concerning this issue. Up until

Combustion Model

Reduced Combustion Model Reduced Reaction Model

Reaction Model

2

1c

1a

1b

Figure 0.6: Schematic illustration of two possibilities for model reduction applied to a combus-

tion model.
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today, this problem is largely unexplored, although there are a few attempts trying to handle this

problem with moderate success [TP02, RP06, RP07, RPV+07]. The question if it is necessary

to take the red colored indirect route 1 or if there is a possibility to reduce the underlying com-

bustion model directly (2), i.e. without considering the pure reaction process solely, is at least

as unexplored [BM07b, MP13]. These issues are concerned with the approximation of so-called

inertial manifolds (IM). Chapter 3 of this work deals with some fundamental studies to this and

furthermore, some basic ideas for IM computation are presented.

Two Fundamental Concepts for Model Reduction

As already mentioned, the focus of this dissertation is on the search for broad common denom-

inators and the discussion of fundamental and unifying concepts of various model reduction

methods in combustion processes. In this context, two fundamental concepts turned out—the

derivative–of–the–state–vector–concept on the one hand and the boundary–value–concept
on the other hand—underlying, combining, and collecting several methods (cf. Figure 0.4). Both

concepts provide an exact identification of at least the reduced reaction model (i.e. without ac-

counting for diffusive or convective terms (cf. Figure 0.6)). The first concept is based on the

time derivative of the state vector (i.e. the vector containing the chemical species concentra-

tions): with increasing derivative order the error associated with the computation of the reduced

model decreases and finally vanishes in the limit, i.e. for an infinite derivative order. In contrast,

the boundary–value–concept exploits an attraction property and can be formulated in form of a

boundary value problem where the associated boundary conditions are specified at two values of

the time variable t: t∗ and t0(< t∗). For fixed t∗, the aforementioned error of the reduced model

decreases with decreasing t0 even exponentially. Thus, already small time intervals |t∗ − t0|
ensure an immense decrease of the inaccuracy. Here again, an exact identification is guaranteed

for t0 = −∞. Based on these fundamental concepts, we succeeded to develop a novel model

reduction method within this work making use of such basic concepts in condenced form. In

comparison to other approaches, the advantage of the new approach lies in the fact that two in-

dependent parameters are provided that can be used as adjusting screws to improve the accuracy

of the reduced model: the derivative order of the state vector as well as the time interval |t∗− t0|
within the boundary value formulation. Accordingly, this approach can be seen as generalization

or fusion of many previous ones allowing now for considerations how to efficiently decrease the

numerical effort.

x
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Outline

Chapter 1 provides a theoretical foundation of this work. It contains the definition of a dy-

namical system, whose formulation is derived based solely on the concept of a set. Dynamical

systems can be classified, inter alia, into systems of partial differential equations and systems

of ordinary ones, which serve as mathematical models within this work. A special type of the

latter are singularly perturbed systems which give rise to processes evolving on two different

time scales and whose analysis is presented in Section 1.2. Based on this, existence of a specific

manifold is stated in FENICHEL’s invariant manifold theorem 1.2.2 serving as SIM whenever

using models in singularly perturbed form. The general procedure of how to compute such a

SIM already known as species reconstruction is presented in the subsequent Section (1.3). Since

one important formulation of species reconstruction is in form of an optimization problem, the

associated theory is discussed in Section 1.4.

Chapter 2 is concerned with the spatially homogeneous reaction model and the reduction of it,

i.e. 1b in Figure 0.6. First, various methods for model reduction are presented and briefly de-

scribed. Following the introduction of two simple test models (see 2.3), two important questions

are discussed: how to estimate the accuracy of SIM approximation without knowing the location

of this manifold (cf. 2.4) and the question concerning the number and the choice of the RPVs (cf.

2.5). This is followed by the presentation of the two previously mentioned fundamental concepts

unifying the approaches presented in 2.1 and 2.2. These concepts are united in condensed form

in a novel approach (see 2.6.4) where two adjusting screws can improve the accuracy of SIM

approximation. Finally, one further idea concerning the search for an exact SIM computation

is presented in 2.9 after considering the model reduction method presented in 2.2 from another

viewpoint (see 2.8).

Spatially inhomogeneous systems, i.e. systems including diffusive and/or convective transport

terms are discussed in Chapter 3. For this purpose, the modeling of diffusion and convection in

one spatial dimension is demonstrated in 3.1. This is followed by a section discussing funda-

mental concepts about theory of partial differential equations (cf. 3.2), whereas the subsequent

sections deal with the question how to obtain a reduced combustion model based on the reduced

reaction model (1c) or by taking the direct route 2 (cf. Figure 0.6).

Subsequently, the dissertation is summarized. The main aspects and results are presented briefly

in condenced form.

xi





1 Analytical Basics

This chapter deals with fundamental aspects underlying the mathematical framework of this

work, including:

• Theory of Dynamical Systems and Systems of Ordinary Differential Equations 1.1

• Theory of Singularly Perturbed Systems 1.2

• Species Reconstruction 1.3

• Theory of Optimization Problems 1.4

Given this introduction, the reader has the mathematical understanding to follow the subsequent

chapters. First, it is shown that the formulation of the most central concept of this work—the

concept of a dynamical system—requires only a small number of simple definitions. These arise

directly from the concept of a set, one of the most important and most elementary concepts in

mathematics in general. Building on this, classifications of a dynamical system are discussed

placing greater emphasis on systems of ordinary differential equations and the question on exis-

tence and uniqueness of a solution. In Section 1.2 a special type of systems of ordinary differen-

tial equations is analyzed, namely those that involve two different time scales and are available

in an explicit fast–slow form, called singularly perturbed systems. In this context, FENICHEL’S

invariant manifold theorem is discussed, which asserts existence of a manifold that is used in the

context of model reduction in a subsequent chapter and whose computation or the basic proce-

dure of the computation, known as species reconstruction, is discussed in the following section.

Especially, the formulation of an optimization problem plays an important role, which is why the

theory of optimization problems is discussed in the last section of this chapter. Exactly for this

species reconstruction approach in form of an optimization problem the existence of a solution

is shown in Theorem 1.4.4, being of particular significance in the context of model reduction

via manifold computation in this work. Within the whole chapter, different concepts are demon-

strated by means of a simple example—a two-dimensional linear system of ordinary differential

equations, introduced in Example 1.1.3.

1



1. Analytical Basics

1.1 Theory of Dynamical Systems and Systems of Ordinary

Differential Equations

One of the most basic concepts in mathematics is the concept of a set. In his work Beiträge zur

Begründung der transfiniten Mengenlehre [Can95], the founder of set theory, CANTOR, gave the

following definition of a set:

“A set is a gathering together into a whole of definite, distinct objects of our percep-

tion or of our thought—which are called elements of the set.”

In general, a set is described as a well defined collection of objects—called elements. If X and

Y are sets and every element of X is also an element of Y , then X is a subset of Y (X ⊂ Y ).

The cartesian product of two sets X and Y is the set of all ordered pairs (x, y), x ∈ X , y ∈ Y
and is denoted by X × Y . A function f : X → Y, x 7→ y from a set X to a set Y is a set f ,

which is a subset of the cartesian product X × Y subject to the following condition: every ele-

ment of X is the first component of one and only one ordered pair in the subset. In other words,

for every x ∈ X there is exactly one element y ∈ Y such that the ordered pair (x, y) ∈ X × Y
is contained in the subset defining the function f . In this context, the elements of X are called

arguments of f and the corresponding unique y ∈ Y is called image of x under f denoted by

f(x). A set with one or more finitary operations defined on it is called algebraic structure. A

special one is a magma (X, ∗) consisting of a set X together with a binary operation ∗, which

is a function ∗ : X ×X → X . Under the condition that this binary operation satisfies the asso-

ciative property (for all x1, x2, x3 ∈ X , the equation (x1 ∗ x2) ∗ x3 = x1 ∗ (x2 ∗ x3) holds) and

there exists an element e ∈ X , such that for all elements x ∈ X , the equation e ∗ x = x ∗ e = x

holds (identity element), the magma becomes a monoid (X, ∗, e).

This mathematical framework suffices for the definition of a dynamical system (in the further

course of this thesis certain terms are assumed to be known and cannot be derived and defined

as detailed as done before).

Definition 1.1.1 (Dynamical System). A dynamical system is a triple (T,Z, ϕ) where T is a

monoid, written additively3, Z is a set, and ϕ is a function

ϕ : U ⊂ (T × Z)→ Z (1.1)

with

ϕ(0, z) = z (1.2a)

ϕ (t2, ϕ(t1, z)) = ϕ(t1 + t2, z), for t1, t2, t1 + t2 ∈ I(z) (1.2b)

3For simplicity reasons the monoid (T,+, 0) is denoted as T .
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1.1. Theory of Dynamical Systems and Systems of Ordinary Differential Equations

where I(z) := {t ∈ T | (t, z) ∈ U}. The function ϕ(t, z) is called the evolution function of

the dynamical system, which associates to every point of Z a unique image, depending on the

evolution parameter t. The set Z is denoted as phase space, while the variable z represents an

initial state of the system. If z is chosen constant, ϕz(t) := ϕ(t, z) is the notation that defines

the flow through z given by ϕz : I(z)→ Z and whose graph is called trajectory.

The particular importance of a dynamical system comes to bear in its relation to everyday events.

Time dependent processes, where the temporal evolution is not determined by the starting time,

but by the initial state (such processes are called homogeneous in time), are mathematically

modeled by dynamical systems, allowing a wide range of applications and insights into different

scientific fields like physics (oscillating movement), biology (predator-prey relationship), and

chemistry (combustion processes), to name only a few.

The dynamical systems (T,Z, ϕ) considered within the scope of this work are dissipative im-

plying the possession of a bounded absorbing set B0 ⊂ Z. A bounded set B0 ⊂ Z in turn

is said to be absorbing for a dynamical system (T,Z, ϕ), if for any bounded set B in Z there

exists t0 = t0(B) such that ϕ (t, B) ⊂ B0 for every t ≥ t0. Especially, if the phase space Z

of a dissipative dynamical system (T,Z, ϕ) is a BANACH space (Z, ‖ · ‖Z), a ball of the form

{z ∈ Z : ‖z‖Z ≤ R} can be taken as an absorbing set, where R ∈ R is referred to as radius of
dissipativity.

The further classification of dynamical systems is done by specification of the triple (T,Z, ϕ),

wherefore the definition of a manifold is required, which is given below.

A topological space (X, T ) is a set X together with a collection T of subsets of X , called open
sets and satisfying the following axioms:

1. The empty set and X itself are open.

2. Any union of open sets is open.

3. The intersection of any finite number of open sets is open.

Underlying the previous definitions, the collection T of open sets is also called a topology on

X . If the topology does not need an explicit name, then the topological space (X, T ) is denoted

by X . Points x1 and x2 in a topological space X can be separated by neighborhoods if there

exists a neighborhood U of x1 and a neighborhood V of x2 such that U and V are disjoint. If

any two distinct points of X can be separated by neighborhoods, X is a HAUSDORFF space. A

topological spaceX is second-countable if there exists some countable collection U = {Ui}∞i=1

3
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of open subsets of X such that any open subset of X can be written as a union of elements of

some subfamily of U .

Definition 1.1.2 (Topological Manifold). A topological space M is called an n-dimensional

topological manifold if

1. M is a HAUSDORFF space.

2. M is second-countable.

3. M is locally EUCLIDEAN, i.e. every point x ∈M has an open neighborhood U ⊂M that

is homeomorphic to an open subset of Rm.

In the remainder of this work a manifold will mean a topological manifold.

A dynamical system (T,M,ϕz) is called real dynamical system if T is an open interval in the

real numbers R, M a manifold locally diffeomorphic to a BANACH space, and ϕz a continuous

function. Additionally, if the manifold M is locally diffeomorphic to Rm, the dynamical system

is finite-dimensional, if not, it is infinite-dimensional.

Example 1.1.3 (Finite-Dimensional Real Dynamical System). A finite-dimensional real dynam-

ical system is given by (R,R2, ϕz0), where ϕz0(t) =: z(t) = (z1(t), z2(t))> is solution of

dtz1(t) =
(
−1− γ

2

)
z1(t) +

γ

2
z2(t) (1.3a)

dtz2(t) =
γ

2
z1(t) +

(
−1− γ

2

)
z2(t) (1.3b)

z1(0) = z0
1 (1.3c)

z2(0) = z0
2 (1.3d)

with γ ∈ R, γ > 0, and z0 := (z0
1 , z

0
2)>.4

Example 1.1.4 (Infinite-Dimensional Real Dynamical System). An infinite-dimensional real

dynamical system is given by (R,B, ϕz0), where B is an infinite-dimensional function space

4Notation: dt := d
dt , dnt := dn

dtn
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1.1. Theory of Dynamical Systems and Systems of Ordinary Differential Equations

and ϕz0(t) =: z(t, x) = (z1(t, x), z2(t, x))> is solution of

∂tz1(t, x) = D1∂
2
xxz1(t, x) +

(
−1− γ

2

)
z1(t, x) +

γ

2
z2(t, x) (1.4a)

∂tz2(t, x) = D2∂
2
xxz2(t, x) +

γ

2
z1(t, x) +

(
−1− γ

2

)
z2(t, x) (1.4b)

z1(0, x) = z0
1(x) (1.4c)

z2(0, x) = z0
2(x) (1.4d)

z1(t, 0) = a1 (1.4e)

z1(t, 1) = b1 (1.4f)

z2(t, 0) = a2 (1.4g)

z2(t, 1) = b2 (1.4h)

with γ, x, a1, b1, a2, b2,D1,D2 ∈ R and z0 :=
(
z0

1(x), z0
2(x)

)>.5

Equations (1.3a), (1.3b) and (1.4a), (1.4b) are differential equations which are mathematical

equations that relate some function with its derivatives. There are two important kinds of differ-

ential equations: ordinary differential equations (ODEs) and partial differential equations
(PDEs). An ODE is a differential equation containing a function of one independent variable

and its derivatives (cf. (1.3a), (1.3b)), whereas a PDE contains unknown multivariable functions

and their partial derivatives (cf. (1.4a), (1.4b)). More precisely, a system of ODEs of order
n ∈ N is given by

S(t, z, dtz, d2
t z, . . . , d

n
t z) = 0 (1.5)

where S : Ω ⊂
(
R× (Rm)n+1

)
→ Rm, m ∈ N is a continuous vector-valued function of z and

its derivatives and z is a vector whose elements are functions z(·) = (z1(·), z2(·), . . . , zm(·))>.

For m = 1 it is just referred to as ODE of order n. If it is possible to solve the system of ODEs

of order n for the highest occuring derivation and consequently is in the following form

dnt z = S(t, z, dtz, d2
t z, . . . , d

n−1
t z), (1.6)

it is called explicit. Furthermore, an explicit system of ODEs of order n not depending explicitly

on the independent variable (here t) is called autonomous. A further classification is lineari-

ty/nonlinearity: A system of ODEs of order n in form of (1.5) is linear if S can be written as a

linear combination of the derivatives of z

dnt z =
n−1∑
i=0

ai(t)ditz + r(t) (1.7)

5Notation: ∂t := ∂
∂t

, ∂2
xx := ∂2

∂x2

5



1. Analytical Basics

where ai(t) and r(t) are continuous functions in t, otherwise it is called nonlinear. Addition-

ally, if r(t) ≡ 0, the linear system of ODEs of order n is specified as homogeneous, if r(t) 6≡ 0

it is referred to as nonhomogeneous. In summary, Equations (1.3a) and (1.3b) are a homo-

geneous, linear, autonomous, and explicit system of ODEs of order one. In the remainder of

this work we restrict ourselves to explicit, autonomous systems of ODEs of order one (note that

on the one hand any system of ODEs can be transformed into an autonomous one by adding

zm+1 := t, dtzm+1 = 1 and on the other hand any system of ODEs of order greater than one

can rewritten as one of order one).

As already indicated, a wide range of disciplines are concerned with systems of ODEs of various

types. The subsequent three examples demonstrate exemplarily the importance of systems of

ODEs in physics, biology, and chemistry, where processes are virtually modeled by these kinds

of equations. Especially the third example shows the modeling of a chemical reaction process

serving as a basis for the content of this work.

Example 1.1.5 (Mathematical Pendulum). The mathematical pendulum is an idealized pendu-

lum where on the one hand the cord on which the bob swings is massless, inextensible, and

always remains taut and on the other hand the bob is believed to be a point mass with mass mG.

Furthermore, the motion occurs only in two dimensions and loses no energy to friction or air

resistance. The whole arrangement takes place in an isolated system. By using the small-angle

approximation sin (φ) ≈ φ, the motion of this pendulum is given by the following ODE of order

two:

d2
tφ(t) +

g

`
φ(t) = 0 (1.8)

Here, g is acceleration due to gravity, ` is the length of the pendulum, and φ is the angular dis-

placement.

`

mGg
mGg sin (φ)

φ

Figure 1.1: Schematic illustration of the mathematical pendulum.
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1.1. Theory of Dynamical Systems and Systems of Ordinary Differential Equations

Example 1.1.6 (SIR Model). The SIR model [KM27], created by KERMACK and MCKENDRICK

in 1927, describes the spread of an infectious disease taking also development of immunities into

consideration. The model considers a fixed population N = S(t) + I(t) +R(t) with three com-

ponents:

S(t) is used to represent the number of individuals not yet infected with the disease at time t

(susceptibles).

I(t) denotes the number of individuals who have been infected with the disease and are capable

of spreading the disease to those in the susceptible category (infected).

R(t) is the compartment used for those individuals who have been infected and then removed

from the disease, either due to immunization or due to death (recovered).

The spread of the disease is formulated by KERMACK and MCKENDRICK by the following

system of ODEs

dtS(t) = −cI(t)S(t) (1.9a)

dtI(t) = iI(t)S(t)− wI(t) (1.9b)

dtR(t) = wI(t) (1.9c)

where c is the rate of disease and w the rate of recovery. Thus, this example demonstrates the

application of ODEs in the biology, more precisely in epidemiology.

Susceptibles Infected Recovered

Figure 1.2: Schematic illustration of the SIR model by KERMACK and MCKENDRICK [KM27].

Example 1.1.7 (Chemical Reaction Kinetics). The following example demonstrates the model-

ing of chemical reaction mechanisms by systems of ODEs. Assuming mspec chemical species—

denoted as X1, . . . ,Xmspec—participating in a chemical reaction mechanism composed of mreac

reactions, this mechanism taking place in a closed system is given by
mspec∑
s=1

ν(e)
rs Xs

kr,+


kr,−

mspec∑
s=1

ν(p)
rs Xs, r = 1, . . . ,mreac. (1.10)

Here, ν(e)
rs and ν(p)

rs are stoichiometric coefficients of reactants and products in reaction r and

kr,+ and kr,− indicate the rate coefficients of an elementary reaction r. The concentration of a

chemical species Xi is given by

zi =
ni
V

(1.11)

7
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with ni being the amount of substance (number of particles) of that species and V being the

volume. In the isochoric case (V being constant) the reaction kinetic equations are given by the

following system of ODEs

dtz =

mreac∑
r=1

νrWr(z) (1.12)

where νr is the vector νr = (ν
(p)
r1 − ν

(e)
r1 , . . . , ν

(p)
rmspec − ν

(e)
rmspec)

> and Wr(z) is the reaction rate

function of reaction r defined by the mass action law

Wr(z) = Wr,+(z)−Wr,−(z) = kr,+

mreac∏
s=1

zν
(e)
rs
s − kr,−

mspec∏
s=1

zν
(p)
rs
s . (1.13)

Thus, the rate coefficients kr,+ and kr,− are the constants of the direct (Wr,+(z)) and of the

inverse (Wr,−(z)) reaction rates of the rth elementary reaction and can be computed by the

ARRHENIUS law given by

kr,± = Ar,±T
br,± exp

(
−Ea,r,±

RT

)
. (1.14)

Here Ar,± and br,± are constants, Ea,r,± is the activation energy, R is the gas constant, and T

denotes the temperature.

The solution of a system of ODEs dtz = S(z) is a differentiable function u : I ⊂ R→ Rm with

dtu = S(u), t ∈ I . The differential equation itself is not sufficient for existence and uniqueness

of a solution. Therefore, additional information in form of initial conditions or boundary
conditions is necessary. The former is a value of an evolving variable at some point in time

designated as initial time (t = t0). If a solution z of a system of ODEs additionally satisfies a

given initial condition, the solution z is said to be a solution of an initial value problem (IVP).

Definition 1.1.8 (Initial Value Problem (IVP)). An initial value problem is a differential equation

dtz = S (z) (1.15)

with S : Ω ⊂ Rm → Rm, together with a point in the domain of S

z(t0) = z0 ∈ Ω, (1.16)

called the initial condition. The solution z of an IVP is also denoted by z(·; z0).

Two important theorems regarding existence and uniqueness of solutions to IVPs are PEANO

existence theorem [Pea86, Pea90] and PICARD–LINDELÖF theorem [Lin94]. The former

guarantees the local existence of solutions to certain IVPs, but there is no statement regarding

uniqueness. This is realized in the PICARD–LINDELÖF theorem where stronger conditions are

required. A brief comparison of both theorems is given in Table 1.1.

8



1.1. Theory of Dynamical Systems and Systems of Ordinary Differential Equations

Theorem 1.1.9 (PEANO Existence Theorem). LetΩ be an open subset of Rm with S : Ω → Rm

a continuous function and dtz = S (z) a system of ODEs defined on Ω, then every IVP

dtz = S (z) , z (t0) = z0 (1.17)

with z0 ∈ Ω has a local solution

u : I → Rm (1.18)

where I is a neighborhood of t0 ∈ R, such that dtu = S (u) for all t ∈ I .

Proof. See e.g. [SB02].

Definition 1.1.10 (LIPSCHITZ Continuity). A function S : Ω ⊂ Rm → Rm, m ∈ N is called

LIPSCHITZ continous if

‖S(ẑ)− S(ž)‖ ≤ L ‖ẑ − ž‖ , ẑ, ž ∈ Ω (1.19)

holds with a so-called LIPSCHITZ constant L > 0.

Theorem 1.1.11 (PICARD–LINDELÖF Theorem). Consider the IVP

dtz = S (z) , z(t0) = z0, z ∈ Rm. (1.20)

Let Ω = B(z0, R) (the closed ball in Rm around z0 with radius R) and I = [t0 − ε, t0 + ε],

where S : Ω → Rm is LIPSCHITZ continuous in z with LIPSCHITZ constant L and |S(z)| ≤ β

for all z ∈ Ω. Then, the IVP has a unique solution z(·; z0) ∈ C0(I,Ω) as long as the time

interval is chosen with a satisfying 0 < ε < min
(

1
L ,

R
β

)
.

Proof. See e.g. [Wal00].

Table 1.1: Comparison of the two main theorems relating to solutions of IVPs involving ODEs.

Theorem Assumption Conclusion

PEANO existence theorem S continuous local existence only

PICARD–LINDELÖF theorem S LIPSCHITZ continuous local existence and uniqueness

Example 1.1.12. The IVP (1.3) fulfills the requirements of Theorem 1.1.11, since S(z) = Az

with

A :=

(
−1− γ

2
γ
2

γ
2 −1− γ

2

)
∈ R2×2 (1.21)

is linear in z and any linear function is LIPSCHITZ continous. Accordingly, there locally exists

a unique solution z(·; z0) ∈ R2 of (1.3).
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There are various types of stability for the solutions of differential equations describing dynam-

ical systems. A solution to a system of ODEs or—more generally—an invariant set M ⊂ Rm+1

(a set M ⊂ Rm+1 is called invariant under the differential equation dtz = S(z) if for any

z(t0) = z0 ∈M there is z(t; z0) ∈M for all t) is

• LYAPUNOV stable if for any given ε > 0 there exists a δ = δ(ε) > 0 such that

ρ
(
M, z(t; z0)

)
< ε holds for any z(t0) = z0 that satisfies ρ

(
M, z0

)
< δ for all t > t0.6

• attractive if there exists a constant η > 0 such that limt→∞ ρ
(
M, z(t; z0)

)
= 0 follows

from ρ
(
M, z0

)
< η.

• asymptotically stable if M is both, LYAPUNOV stable and attractive.

• exponentially stable if it is asymptotically stable and there exist α, β, η > 0 such that if

ρ
(
M, z0

)
< η, then ρ

(
M, z(t; z0)

)
≤ αρ

(
M, z0

)
e−βt for all t > t0.

In other words, LYAPUNOV stability means that solutions starting close to M will remain close

to M , asymptotic stability means that solutions that start close enough not only remain close

enough but also eventually converge to M , and exponentially stability means that solutions con-

verge faster than or at least as fast as a particular known rate.

Stability properties of an equilibrium solution z(t) = zeq of a system of ODEs (an equilibrium

solution is a solution that does not change with time or, more precisely, the system of ODEs

dtz = S(z) has an equilibrium solution z(t) = zeq if S(zeq) = 0 for all t) are determined by

analyzing the JACOBIAN JS(zeq) :=
(
∂zjSi(z

eq)
)
i,j=1,...,m

of the right-hand side S(z), which

is supposed to be continuously differentiable here: if all eigenvalues of JS(zeq) have strictly

negative real part then the equilibrium solution is asymptotically stable.

Furthermore, there is a result from [RS03] concerning existence of exponentially stable mani-

folds: an invariant manifold M of an autonomous system of ODEs is exponentially stable if and

only if all components, transversal to M , of solutions of the linearized equations exponentially

tend to zero. In addition to it, the work shows the existence of a function which characterizes

points on exponentially stable manifolds.

In Figure 1.3 solutions of the linear IVP (1.3) with γ = 10 are illustrated in the two-dimensional

phase space for different values of z0 represented by the crosses. Accordingly, the trajecto-

ries represent the appropriate solutions z(·; z0), while the red dot constitutes the asymptoti-

cally stable equilibrium zeq = (0.0, 0.0)>, since eigenvalues of the JACOBIAN JS(zeq) =

6ρ(M, ẑ) := inf
y∈M
‖y − ẑ‖ , ẑ ∈ Rm

10
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(
−6.0 5.0

5.0 −6.0

)
arise as λ1 = −1 and λ2 = −11. The invariance property of trajectories

is demonstrated by the green curve: for z0 = z(t0) = (0.0, 6.0)> and z1 = z(t1; z0) ∈
z(·; z0), t1 > t0, represented by the green cross, there is z(·; z1) ∈ z(·; z0) for all t. Futhermore,

the red curve shows an exponentially stable manifold.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

z2

z1

Figure 1.3: Phase space plot of the linear IVP (1.3) with γ = 10 for different values of z0.

The unique solution to (1.3) (see Example 1.1.12) is given by

z1(t) =
z0

1 + z0
2

2
e−t +

z0
1 − z0

2

2
e(−1−γ)t (1.22a)

z2(t) =
z0

1 + z0
2

2
e−t − z0

1 − z0
2

2
e(−1−γ)t (1.22b)

where a separation of time scales7 is visible (depending on the parameter γ): the first term
z0
1+z0

2
2 e−t represents the slow modes of the system and the second one z0

1−z0
2

2 e(−1−γ)t the fast

modes. As can be seen, the fast mode terms vanish for z0
1 = z0

2 and thus, z1(t) ≡ z2(t). As

a consequence, the slow time scales of the system are associated with the exponentially stable

7Formally defined, a time scale is a closed subset of the real number line R.
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manifold z1 ≡ z2 (red curve in Figure 1.3).

Chemical reaction kinetics modeled by systems of ODEs as illustrated in Example 1.1.7 often

show—under certain conditions—very similar features as the linear model discussed above: so-

lution trajectories bundle near asymptotically stable manifolds of successively lower dimension

during time evolution caused by spectral gaps generating multiple time scales. This time scale

separation into fast and slow modes is the basis for most model and complexity reduction tech-

niques, where the long time scale system dynamics is approximated via elimination of the fast

relaxing modes by enslaving them to the slow ones. The outcome of this is in the ideal case

an invariant manifold of slow motion, which is denoted as slow invariant manifold (SIM).
Existence results of such SIMs are analyzed in the theory of singularly perturbed systems.

1.2 Theory of Singularly Perturbed Systems

Systems of ODEs in form of (1.15) that involve processes evolving on two different time scales

naturally give rise to systems of the form

dtzf = Sf (zf , zs; ε) (1.23a)

dtzs = εSs (zf , zs; ε) (1.23b)

called singularly perturbed systems of ODEs. Here, the functions Sf : Ω × I → Rmf and

Ss : Ω × I → Rms are assumed to be smooth with Ω being an open subset of Rmf × Rms

and I ⊂ R+. Furthermore, zf ∈ Rmf and zs ∈ Rms with mf ,ms ∈ N and mf + ms = m.

The parameter ε ∈ I is assumed to be small in the sense that 0 < ε � 1 and measures the

separation of time scales. The so-called fast variables zf change at a rate of O(1), whereas the

slow variables zs evolve more slowly, at a rateO(ε). System (1.23) can be rewritten with a time

transformation

εdτzf = Sf (zf , zs; ε) (1.24a)

dτzs = Ss (zf , zs; ε) (1.24b)

where τ := εt defines the slow time τ . Accordingly, systems (1.23) and (1.24) are referred to

as fast and slow systems, respectively. Whenever ε 6= 0, fast and slow system are equivalent.

Conversely, there is a discontinous limiting behavior as ε→ 0 determining the label ‘singular’:

The fast system (1.23) turns into the reduced fast system

dtzf = Sf (zf , zs; 0) (1.25a)

dtzs = 0 (1.25b)

12
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when ε = 0, describing an mf -dimensional system of ODEs with zs as constant parameter,

whereas the slow system (1.24) reduces to a differential–algebraic system—the reduced slow
system

0 = Sf (zf , zs; 0) (1.26a)

dτzs = Ss (zf , zs; 0) , (1.26b)

where the number of ODEs decreases from m to ms. It is natural to attempt to solve zf in terms

of zs from Equation (1.26a) and plug it into (1.26b), wherefore the implicit function threorem
can be applied.

Theorem 1.2.1 (Implicit Function Theorem). Let Sf : Ω → Rmf , (zf , zs) 7→ Sf (zf , zs) be a

continuously differentiable function with Ω being an open subset of Rmf × Rms . Fix a point

(z0
f , z

0
s ) ∈ Ω with Sf(z

0
f , z

0
s ) = 0. If the matrix ∂zfSf

(
z0

f , z
0
s

)
is invertible, then there exists

an open set Ω1 containing z0
f , an open set Ω2 containing z0

s , and a unique continuously dif-

ferentiable function h0 : Ω2 → Ω1 with h0(z0
s ) = z0

f such that Sf

(
h0(zs), zs

)
= 0 for all

zs ∈ Ω2.

Proof. See e.g. [Heu04].

Provided that all eigenvalues of ∂zfSf (zf , zs; 0) have negative real part, the implicit function

theorem guarantees existence of a continuously differentiable function h0 : Ω2 ⊂ Rms → Rmf

with h0(zs) = zf such that Sf
(
h0(zs), zs; 0

)
= 0 for all zs ∈ Ω2 represents a slow manifold

defined by

M0 := {(zf , zs) | zf = h0(zs), zs ∈ Ω2} ⊂ Rm. (1.27)

As a consequence, the dynamics of the reduced slow system (1.26) are given by

dτzs = Ss
(
h0 (zs) , zs; 0

)
. (1.28)

Beyond that, each point
(
h0(zs), zs

)
∈ M0 is an asymptotically stable equilibrium solution of

Equation (1.25a) and thus,M0 is asymptotically stable.

By using ε := 1
γ+1 and z = Rz̃ with R =

(
cos π4 − sin π

4

sin π
4 cos π4

)
, the linear model dτz = Az with

A given by (1.21) becomes

dτ z̃1 = −z̃1 (1.29a)

εdτ z̃2 = −z̃2 (1.29b)
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comprising the slow system form (1.24) of a singularly perturbed system with z̃1 representing

the slow variable and z̃2 the fast one. The corresponding reduced slow system

dτ z̃1 = −z̃1 (1.30a)

0 = −z̃2 (1.30b)

yields the z̃1-axis being the slow manifold

M0 := {(z̃1, z̃2) | z̃2 = h0(z̃1) = 0} (1.31)

and by using again z = Rz̃ the first bisectrix z2 ≡ z1.

FENICHEL’s invariant manifold theorem (see e.g. [Jon95]) asserts existence and properties

of a manifold Mε for system (1.23) or (1.24) in case ε > 0 that is a perturbation of M0.

For this result, the definition of a locally invariant set is necessary: a set U is called locally

invariant under (1.23) if it has a neighborhood V such that no trajectory can leave U without

also leaving V . Furthermore, we say that M0 is normally hyperbolic if the linearization of

(1.25) at each point (ẑf, ẑs) ∈ M̂0 has exactly ms eigenvalues with zero real part, where M̂0 is

an ms-dimensional manifold in {Sf (zf, zs; 0) = 0} containingM0 in its interior.

Theorem 1.2.2 (FENICHEL Invariant Manifold Theorem). IfM0 is a normally hyperbolic man-

ifold then there exists, for ε > 0 sufficiently small,

• a manifold Mε that is diffeomorphic to M0 and has HAUSDORFF distance8 O(ε) (as

ε→ 0) fromM0.

• a function hε(zs) = zf defined on a compact set K ⊂ Rms such that the graph

Mε = {(zf , zs) | zf = hε(zs), zs ∈ K} ⊂ Rm (1.32)

is locally invariant under (1.23).

Proof. See [Fen72, Fen79].

Furthermore, the function hε admits an asymptotic perturbation expansion

hε(zs) = h0(zs) + εh(1)(zs) + ε2h(2)(zs) +O(ε3) (1.33)

8The HAUSDORFF distance between two nonempty sets V,W ⊂ Rm is defined by

dH(V,W ) := max{sup
v∈V

inf
w∈W

‖v − w‖, sup
w∈W

inf
v∈V
‖v − w‖}

.
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1.3. Species Reconstruction

as ε ↘ 0 where the coefficients h(`) : K → Rmf , ` ∈ N are found successively from plugging

hε(zs) into the invariance equation: an equation that holds, in particular, along trajectories on

invariant manifolds

ε · Jhε(zs) · Ss (hε(zs), zs; ε) = Sf (hε(zs), zs; ε) , ∀zs ∈ K (1.34)

and follows immediately from the chain rule dtzf = Jhε(zs) · dtzs and Equations (1.23). Conse-

quently, the dynamics of System (1.23) onMε are given by the reduced equation

dτzs = Ss (hε(zs), zs; ε) . (1.35)

When applying this to the linear example (1.29) the perturbation expansion yields hε ≡ h0 and

thus, concerning dτz = Az, the first bisectrix coincides not only withM0, but also withMε,

which in general is not usual at all. Finally, the reduced equation (1.35) results as

dτz1 =
(
−1− γ

2

)
z1 +

γ

2
hε(z1) = −z1. (1.36)

Generally, chemical reation kinetic models with multiple time scales in form of a system of

ODEs are not in singularly perturbed form as (1.23). Nevertheless, to guarantee existence of

SIMs, the existence of a diffeomophism is assumed that transforms the general system of ODEs

dtz = S(z) into as singularly perturbed one (1.23). By doing this, a SIM is defined by (1.32)

with hε given in (1.33) posessing the property of attracting system trajectories from arbitraty

inital values. As mentioned before, SIMs play a significant role in the context of model reduction

in chemical reaction kinetics, which is why the computation ofMε and thus also hε is absolutely

essential. However, it is not feasible to obtain an analytic expression for hε from the theory of

singularly perturbed systems for realistic kinetic models, the consequence being that numerical

computation approaches are required.

1.3 Species Reconstruction

In general chemical reaction kinetic models dtz = S(z), where the diffeomorphism trans-

forming the system of ODEs into a singularly perturbed one is not known (existence is as-

sumed anyway), it is far from clear how to split the full composition state vector of the system

z = (zi)
m
i=1 into slow and fast variables. Therefore, most kinetic model reduction approaches

define a subset of the state variables, the reaction progress variables (RPVs) zj , j ∈ Ifixed,

where Ifixed ⊂ {1, . . . ,m} is the index set for the RPVs that parameterize a SIM and whose
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1. Analytical Basics

determination is a substantial challenge in the context of model reduction in chemically re-

acting flows which will be partially discussed later. Species reconstruction is the process of

fixing the RPVs at a given point in time t = t∗ and determining the free variables (non RPVs)

zk(t∗), k /∈ Ifixed from zt∗j := zj(t∗), j ∈ Ifixed, which implicitly defines a species reconstruc-

tion function h ∈ C(R#Ifixed ,Rm−#Ifixed) mapping the RPVs to the full species composition

thus determining a point on a SIM. The resulting point z(t∗) consisting of the RPVs zt∗j and

h
(
zt∗j

)
is referred to as point of interest (POI). In comparison to the singularly perturbed sys-

tem of ODEs, the RPVs, in the ideal case, correspond to the slow variables, the species recon-

struction function h to hε, and a SIM is the diffeomorphic manifestation ofMε. Accordingly,

the reduced dynamics on a SIM is given by

dtzj = Sj (z) , j ∈ Ifixed (1.37a)

zk = h (zj) , j ∈ Ifixed, k /∈ Ifixed (1.37b)

where the number of ODEs has reduced from m to #Ifixed.

Figure 1.4 illustrates species reconstruction applied to the Linear Model (1.3a), (1.3b), where

Ifixed = {2} is chosen as index set for determining the RPV that parameterizes the SIM (red

line). Fixing the PRV at time t = t∗ is done for three different values of zt∗2 (zt∗2 = 1.0,

zt∗2 = 3.0, and zt∗2 = 5.0), whereby the corresponding points in phase space are restricted to the

respective black dashed lines. Then, the species reconstruction function h identifies the respec-

tive values of the non RPVs in a way that the resulting POIs
(
zt∗2 , h

(
zt∗2
))> represented by the

black crosses identify the SIM exactly.

To sum up, trajectories of system of ODEs modeling chemical combustion processes with spec-

tral gaps generating multiple time scales bundle on hierarchically ordered manifolds of suc-

cessively lower dimension in phase space during time evolution. These asymptotically stable

SIMs—representing the slow modes of the system and whose existence (cf. 1.2.2) is given by

assuming a diffeomorphism transforming the kinetic model equations into a singularly perturbed

form—are the basis for many model reduction approaches, where the identification of the slow

modes of the system and thus, the computation of SIMs is realized via species reconstruction.

A sketch of this situation is depicted in Figure 1.5, where a three-dimensional phase space—

spanned by the dependent state variables—is restricted to a physically meaningful domain given

by the positivity of the values of the state variables and several conservation relations (e.g. ele-

mental mass in chemical kinetics). The edges of this polytope are visualized by the blue dashed

lines, whereas the black lines show trajectories starting from different initial values represented

by the black crosses and converging towards the chemical equilibrium depicted by the red dot.

It can be observed, that trajectories first bundle onto a two-dimensional SIM (red bounded) dur-
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Figure 1.4: Illustration of species reconstruction applied to (1.3a), (1.3b) with three different

values of zt∗2 .

ing time evolution followed by a bundling onto a one-dimensional SIM before converging to

equilibrium—also denoted as ‘zero-dimensional manifold’. Since the temporal rate of change

of the state vector converges to zero along the course of a trajectory through phase space, SIMs

represent the slow modes of the kinetic model and thus it is desirable to find a constructive rep-

resentation hereof. This representation is realized via species reconstruction, demonstrated in

Figure 1.6. Here, Figure 1.6(a) represents a sketch of the identification of a two-dimensional

SIM by using Ifixed = {2, 3} as index set for the selection of the RPVs, whereas in Figure

1.6(b), z2 is determined as RPV w.l.o.g. for parameterizing the one-dimensional SIM. For sev-

eral values of these RPVs (
(
zt∗2 , z

t∗
3

)>,
(
zt∗2 , z

t∗
3

)>, and
(
zt∗2 , z

t∗
3

)> in Figure 1.6(a) and zt∗2 , zt∗2 ,

and zt∗2 in Figure 1.6(b)) the species reconstruction function h identifies the corresponding POIs

on the SIMs.

Finding a functional Φ ∈ C∞ (C∞ (R,Rm) ,Rp) , p ≤ m with Φ(z) = 0 that automatically

eliminates the fast modes without knowing the analytical solution z ∈ C∞ (R,Rm) of the

underlying ODE model equations is the main challenge of trajectory–based model reduction
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0D 

1D 

2D 

Figure 1.5: Sketch of a three-dimensional phase space of a chemical reaction kinetic model. Tra-

jectories bundle near SIMs of successively lower dimension during time evolution

caused by multiple time scales.

approaches. With the intention of finding the species reconstruction function h, the resulting

general species reconstruction problem can be formulated as

Φ(z) = 0 (1.38a)

dtz(t) = S (z(t)) (1.38b)

0 = g (z(t∗)) (1.38c)

zj(t∗) = zt∗j , j ∈ Ifixed (1.38d)

0 ≤ z(t∗), (1.38e)

with (1.38b) describing the kinetic model equations and (1.38d) the fixing of the RPVs at time

t = t∗. The function g ∈ C∞
(
Rm,Rb

)
in (1.38c) contains possible additional constraints (for

instance chemical element mass conservation relations). Furthermore, the positivity of the state

vector (1.38e) is required in real-life applications, which is mostly omitted in the further course

of this work, since this work is restricted to toy examples where no negative values of the state

vector occur. Alternatively, true to the motto
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1.4. Theory of Optimization Problems

2D POI POI POI 

POI 

(a) Sketch of species reconstruction with two RPVs and

thus a two-dimensional SIM is computed.

1D 

POI 
POI 

POI 

(b) Sketch of species reconstruction with one RPV and

thus a one-dimensional SIM is computed.

Figure 1.6: Sketch of species reconstruction. For fixed values of the RPVs the species recon-

struction function identifies POIs on SIMs.

“For since the fabric of the universe is most perfect and the work of a most wise

Creator, nothing at all takes place in the universe in which some rule of maximum

or minimum does not appear. ”

famously uttered by L. EULER in 1744 [Eul44], the species reconstruction problem can be

written—as suggested by LEBIEDZ in [Leb04]—in form of the following optimization problem

min Φ(z) (1.39a)

subject to

dtz(t) = S (z(t)) (1.39b)

0 = g (z(t∗)) (1.39c)

zj(t∗) = zt∗j , j ∈ Ifixed (1.39d)

0 ≤ z(t∗) (1.39e)

with Φ ∈ C∞ (C∞ (R,Rm) ,R), wherefore a few basic concepts concerning theory of optimiza-

tion problems have to be discussed.

1.4 Theory of Optimization Problems

As mentioned before, this work deals with model reduction in the context of chemical reaction

kinetics where the reduced dynamics are identified via SIM computation, wherefore a species
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1. Analytical Basics

reconstruction in form of an Optimization Problem (1.39) can be used. In short, an optimiza-

tion problem is the problem of finding the best solution from all feasible ones. A general form

of an optimization problem is

min Φ(z) (1.40a)

subject to

z ∈ S (1.40b)

whereZ is a topological space, S ⊂ Z being the feasible set, andΦ : Z → R is a given function,

denoted as objective function, to be minimized over the variable z ∈ S. The optimization

problems considered in this work are in form of a minimization problem. A maximization

problem can be treated by negating the objective function.

Definition 1.4.1 (Basic Notions). Consider Optimization Problem (1.40).

(i) The vector z ∈ Z is called feasible w.r.t. (1.40), if z ∈ S.

(ii) The feasible vector z̄ is called strict global minimizer w.r.t. (1.40) (cf. Figure 1.7), if

Φ (z̄)
≤
<
Φ(z) ∀z ∈ Z, z 6= z̄. (1.41)

(iii) The feasible vector z̄ is called strict local minimizer w.r.t. (1.40) (cf. Figure 1.7), if there

exists a neighborhood U ⊂ Z with z̄ ∈ U , such that

Φ (z̄)
≤
<
Φ(z) ∀z ∈ Z ∩ U, z 6= z̄. (1.42)

(iv) The optimal value w.r.t. (1.40) (cf. Figure 1.7) is defined by v := inf{Φ(z) | z ∈ S} if

S 6= ∅ and v :=∞ if S = ∅.

Example 1.4.2 (Nonlinear Programming Problem in Standard Form). The Optimization Prob-

lem (1.40) appears often in the following standard form

min Φ(z) (1.43a)

subject to

gin(z) ≤ 0 (1.43b)

heq(z) = 0 (1.43c)

where the feasible set S ⊂ Z = Rm from (1.40) is given by

S = {z ∈ Rm | gin(z) ≤ 0, heq(z) = 0}. (1.44)

Here, Φ, gin : S → Rmin , and heq : S → Rmeq are assumed to be twice continuously differen-

tiable.
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z

Φ(z)

strict global minimizer strict local minimizer

optimal value

Figure 1.7: Schematic illustration of a strict local minimizer, a strict global one, and the optimal

value w.r.t. (1.40) with S = R.

The immense significance of an easily formulated optimization problem as (1.40) or (1.43) is

based on the fact that it can be used as a mathematical model for different real-life applications

in a variety of sectors like physics, chemistry, and medicine, to name just a few. In this context,

the vector z ∈ Z can describe parameters of a model, which have not yet been determined by

the modeling schemes or depict the freedom of choice and now should be chosen in an optimal

way.

Next, existence of solutions to an optimization problem of the general form (1.40) is analyzed,

whereby the following WEIERSTRASS extreme value theorem is inevitable.

Theorem 1.4.3 (WEIERSTRASS Extreme Value Theorem). A continuous real-valued function

Φ : S → R on a non-empty compact space S ⊂ Z attains its infimum.

Proof. See e.g. [Ger12].

This theorem guarantees the existence of at least one solution to Optimization Problem (1.40),

if the aforementioned requirements of Theorem 1.4.3 are fulfilled. In the case of a finite op-
timization problem (i.e. S ⊂ Rm), compactness of a set S ⊂ Rm is guaranteed by S being

both closed and bounded, stated in the HEINE–BOREL theorem, which does noch apply to the

infinite case (S ⊂ Z, Z 6= Rm). In this latter case, there is a modification of the WEIERSTRASS

extreme value theorem making use of a weakly compact set, being a compact set with respect

to the weak topology. For further details concerning this modification see [Leb12]. Thus, this

theorem, formulated and proved by LEBIEDZ in [LSU11], yields statements on existence of so-

lutions in the infinite case, if sufficient conditions are accessible guaranteeing weak compactness

of the relevant set.
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Theorem 1.4.4 (Existence of a Solution of Optimization Problem (1.39)). Consider Optimiza-

tion Problem (1.39). Let the constraint (1.39c) be given in the form Az = b for some (b×m)–

matrix A of rank b and elements aij ≥ 0, j ∈ {1, . . . ,m}, bi > 0, i ∈ {1, . . . , b} and assume

that for each index j ∈ {1, . . . ,m} there is an index i ∈ {1, . . . , b} such that aij > 0. Let Φ be

a function continuously depending on z. Then a solution of Problem (1.39) exists for all feasible

choices of zj(t∗), j ∈ Ifixed.

Proof. See [LSU11].

Optimization Problem (1.39), used as species reconstruction in this work (see 1.3), is a semi-
infinite optimization problem, being an optimization problem with either a finite number of

variables and an infinite number of constraints, or the other way around. Here, the dynamics

in form of a system of ODEs (1.39b), whose solutions are represented by the state variable

z : I ⊂ R→ Rm, enter the optimization problem as constraints. It turned out in application that

computation of a solution of the dynamics (1.39b) within the solution algorithm for (1.39) can

be very time consuming, which is why a ‘local optimization problem’ might be beneficial:

min Φ(z)
∣∣∣
t=t∗

(1.45a)

subject to

0 = g (z(t∗)) (1.45b)

zj(t∗) = zt∗j , j ∈ Ifixed (1.45c)

0 ≤ z(t∗). (1.45d)

This local optimization problem in turn is a finite one and subordinates itself to the standard form

(1.43), wherefore first order necessary and second order necessary and sufficient conditions for

optimality can be stated.

Given a point z in the feasible set (1.44), an inequality constraint gin
i (z) ≤ 0 is called active at

z if gin
i (z) = 0. The active set

A(z) := {i | gin
i (z) = 0, i = 1, . . . ,min}. (1.46)

at any feasible point z of (1.43) is made up of those inequality constraints gin
i (z) that are active

at the current point and is particularly important in optimization theory as it determines which

constraints will influence the final result of optimization. Additionally, a feasible point z of

(1.43) with active set A(z) is said to fulfill the linear independence constraint qualification
(LICQ) if the set of equality constraint gradients and active inequality constraint gradients9

{∇heq
j (z), j = 1, . . . ,meq} ∪ {∇gin

i (z), i ∈ A(z)} (1.47)

9Notation: ∇ :=
(

∂
∂z1

, . . . , ∂
∂zm

)>
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is linearly independent. First order necessary conditions for a solution to be optimal are formu-

lated in the KARUSH–KUHN–TUCKER (KKT) conditions.

Theorem 1.4.5 (KARUSH–KUHN–TUCKER Conditions). Let z∗ be a local minimizer w.r.t.

(1.43), Φ, heq, and gin continuously differentiable, and z∗ fulfill LICQ. Then there exist con-

stants µ∗i , i = 1, . . . ,min and λ∗j , j = 1, . . . ,meq, called KKT multipliers, such that

∇Φ(z∗) =

min∑
i=1

µ∗i∇gin
i (z∗) +

meq∑
j=1

λ∗j∇h
eq
j (z∗) (1.48a)

gin
i (z∗) ≤ 0, ∀i = 1, . . . ,min (1.48b)

heq
j (z∗) = 0, ∀j = 1, . . . ,meq (1.48c)

µ∗i (z
∗) ≥ 0, ∀i = 1, . . . ,min (1.48d)

µ∗i g
in
i (z∗) = 0, ∀i = 1, . . . ,min. (1.48e)

Proof. See e.g. [GK02].

Equation (1.48a) is known as LAGRANGIAN stationarity, (1.48b) and (1.48c) as primal fea-
sibility, (1.48d) as dual feasibility, and (1.48e) is labeled complementary slackness. Further-

more, a point (z∗, λ∗, µ∗) that satisfies all KKT conditions (1.48) is called KKT point. The

KKT conditions are sufficient for optimality if the following conditions are satisfied:

(i) The objective function Φ is a convex function.

(ii) The inequality constraints gin
i are continuously differentiable concave functions.

(iii) The equality constraints heq
j are affine functions.

In general, however, the necessary conditions are not sufficient for optimality and additional

information is necessary, such as the second order sufficient conditions (SOSC). For smooth

functions, SOSC involve the second derivatives, which explains its name.

Theorem 1.4.6 (Second Order Necessary and Sufficient Conditions (SONC and SOSC)). Let Φ,

gin, and heq be twice continuously differentiable.

• (SONC) Let z∗ be a local minimizer of (1.43) fulfilling LICQ and λ∗, µ∗ be KKT multipli-

ers. Then it holds10

w>

∇2
zzΦ(z∗)−

min∑
i=1

µ∗i∇2
zzg

in
i (z∗)−

meq∑
j=1

λ∗j∇2
zzh

eq
j (z∗)

w ≥ 0

∀w ∈ W(z∗, λ∗, µ∗).

(1.49)

10Notation: ∇2
zz :=

(
∂2

∂zi∂zj

)
i,j=1,...,m
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• (SOSC) Let (z∗, λ∗, µ∗) be a KKT point. Suppose further that

w>

∇2
zzΦ(z∗)−

min∑
i=1

µ∗i∇2
zzg

in
i (z∗)−

meq∑
j=1

λ∗j∇2
zzh

eq
j (z∗)

w > 0

∀w ∈ W(z∗, λ∗, µ∗), w 6= 0.

(1.50)

Then z∗ is a strict local minimizer for (1.43).

Proof. See e.g. [GK02].

Here,

W(z∗, λ∗, µ∗) := {d ∈ F(z∗) | d>∇gin
i (z∗) ≥ 0 ∀i ∈ A(z∗) with µ∗i > 0} (1.51)

is the critical cone with

F(z∗) := {d ∈ Rm | d>∇gin
i (z∗) ≤ 0, i ∈ A(z∗); d>∇heq

j (z∗) = 0, j = 1, . . . ,meq}.
(1.52)

In case of S = Rm, SOSC coincide with the requirement regarding the HESSIAN ∇2
zzΦ(z∗) to

be positive definite, which is the well-known second order sufficient condition for unconstrained

optimization problems.
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2 Spatially Homogeneous Systems: Slow

Invariant Manifold Computation

As already known from the section before, SIM computation approaches using species recon-

struction aim at finding the species reconstruction function h yielding the corresponding POI

on the SIM to be computed. Since the majority of those methods cannot identify the corre-

sponding POI on the SIM exactly, there is an error of accuracy δerr, defined by the difference

of the species reconstruction function h representing the missing values of the POI and the

approximated species reconstruction function happ resulting from the respective approach and

complementing the approximated POIapp:

δerr := ‖h(zj)− happ(zj)‖2, j ∈ Ifixed. (2.1)

If δerr ≡ 0, the method is called named exact and thus, the approximated SIM, SIMapp, repre-

sented by happ equates with the SIM, and, as a consequence, POIapp ≡ POI as well as happ ≡ h.

Figure 2.1 illustrates these notions with the help of the Linear Model (1.3a), (1.3b), where

z2(t∗) = zt∗2 is fixed as RPV. A hypothetical SIM computation method computes the POIapp

on the SIMapp (blue line) by finding happ, which has an error of accuracy of δerr to the POI on

the SIM (red line). Obviously, this hypothetical method is not exact.

This chapter contains one of the main results of this dissertation, namely the reduction of sev-

eral different SIM computation approaches to two fundamental, basic concepts underlying,

combining, and collecting those: the derivative–of–the–state–vector–concept and the novel

boundary–value–concept. This is essentially presented in Section 2.6, where an improved for-

mulation of a species reconstruction is proposed also, uniting both concepts in concentrated form

in one approach. Before that, it is necessary to give a short summary of those SIM computa-

tion methods, which is realized in Section 2.1 and 2.2. After introducing two specific systems

of ODEs serving as representative examples for testing and analyzing several issues (Section

2.3), two possibilities are discussed in 2.4 to quantify the POIapps resulting from a species re-

construction without knowing the position of the SIM. Section 2.5 addresses the issue, which

RPVs, and accordingly, how many RPVs (i.e. #Ifixed) should be chosen in a species reconstruc-

tion approach to represent at best the slow modes of the system in the reduced model formula-

tion. In connection with Section 2.6, 2.7 shows examplarily how to obtain best possible results
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Figure 2.1: Illustration of the newly introduced notions: Error of accuracy δerr, POIapp, SIMapp,

happ, and POIapp.

from the boundary–value–concept applied to realistic scenarios where the feasible phase space

is restricted to a polyhedron. Section 2.8 deals with an alternative point of view of the species

reconstruction method presented in 2.2. Here, POIapps are computed by solving a boundary

value problem resulting from interpreting the non RPVs as control, which is based on an idea of

LEBIEDZ. Finally, Section 2.9 indicates a further idea concerning the search for an exact SIM

identification based on HAMILTON’s principle, which was also suggested by LEBIEDZ.

2.1 Methods for Slow Invariant Manifold Computation:

Historical Review

Model reduction methods via SIM computation for systems of ODEs modeling chemical kinet-

ics have been developed for about one hundred years. Some of these are exemplarily pointed

out here, some clearer and in more detail than others, depending on relevance for this work.

However, it is expressly advised that this listing does not claim to be exhaustive. An attempt has

been made to list the approaches in chronological order, although it is not explicitly identifiable
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2.1. Methods for Slow Invariant Manifold Computation: Historical Review

in each case, so that the order allows no conclusion referring to the prominence of the particular

method.

2.1.1 Quasi–Steady–State Assumption (QSSA)

One of the first model reduction approaches in chemical kinetics was the quasi–steady–state
assumption (QSSA) [Bod07, Bod13, CU13] firstly published by BODENSTEIN in 1907. In this

approach, certain species are assumed to be in steady state, meaning that the QSSA provides

an assumption that there is no change of concentrations in time for all intermediates. In other

words, the rate of formation and consumption are assumed to equalize, the consequence being

that the state variables representing such species are considered as constant.

Applied to the Linear Model (1.3a), (1.3b), the QSSA yields

dtz1(t) =
(
−1− γ

2

)
z1(t) +

γ

2
z2(t) = 0 (2.2a)

dtz2(t) =
γ

2
z1(t) +

(
−1− γ

2

)
z2(t). (2.2b)

As a result, the rate of change of some species depend on the rate of change of the other species:

z1 = happ(z2) =
γ

γ + 2
z2. (2.3)

Thus, certain ODEs can be replaced by an algebraic one such that the original system of ODEs

changes to a system of differential algebraic equations

z1(t) =
γ

γ + 2
z2(t) (2.4a)

dtz2(t) =
−1− γ
γ
2 + 1

z2(t) (2.4b)

where the number of differential variables has reduced from two (z1, z2) to one (z1). In this

example, species reconstruction is done by using Φ(z) = dtz1, Ifixed = {2}, and omitting

constraints (1.38c) and (1.38e) in (1.38), or, alternatively, Φ(z) = z1, Ifixed = {2}, and omitting

constraints (1.39c) and (1.39e) in (1.39). The error of accuracy of SIM computation (remember

the analytic formula of the SIM in the linear model is given by z1 ≡ z2 = h(z2)) results in

δerr := h(z2)− happ(z2) = 2
γ+2z2, (2.5)

decreasing with increasing spectral gap parameter γ.

Provided that a singularly perturbed form of the kinetic model equation is accessible and the

correct choice of the state variables is taken, the QSSA conforms with the Reduced Fast System

(1.25) of the singular perturbation theory. I.e. if the dynamics are not in singularly perturbed
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2. Spatially Homogeneous Systems: Slow Invariant Manifold Computation

form, the QSSA requires detailed expert knowledge of chemical kinetics and the underlying

model equations in order to decide for which species a quasi-static situation can be assumed.

Due to its conceptual simplicity the QSSA is still used nowadays although more sophisticated

model reduction methods have been developed. There are also implementations for an automatic

application of this method, see e.g. [Nil01].

2.1.2 Partial Equilibrium Assumption (PEA)

In contrast to the QSSA where the major assumption is on species, the partial equilibrium as-
sumption (PEA) [MP13] focuses on reactions in particular: fast elementary reaction steps are

assumed to be relaxed to partial equilibrium immediately. In other words, forward and reverse

rates of the reaction are assumed to be exactly the same, being the consequence that this reaction

can be replaced by an algebraic equation.

The correlation between PEA and QSSA is analyzed in [Gou12] where it is shown that PEA and

QSSA are limiting cases of leading order asymptotics. Furthermore, QSSA can be interpreted

as limiting case of PEA.

2.1.3 Intrinsic Low Dimensional Manifold (ILDM)

In 1992, MAAS and POPE introduced the intrinsic low dimensional manifold (ILDM) method

[MP92] which has become very popular and widely used in the reactive flow community, in

particular in combustion applications. In this method a local time scale analysis is performed

via matrix decomposition of the JACOBIAN JS :=
(
∂zjSi

)
i,j=1,...,m

of the right-hand side S(z)

of the underlying system of ODEs. The eigenvalues of JS identify those local time scales of the

system, whereas the eigenvectors identify the local directions associated with the corresponding

time scales in the m–dimensional phase space. For demonstration purposes, the idea of the

ILDM method is demonstrated on the example of a linear system dtz = JSz as performed

in [Pet03], where JS is a constant JACOBIAN matrix. The corresponding eigenvectors can be
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2.1. Methods for Slow Invariant Manifold Computation: Historical Review

obtained by the following decomposition of JS with Ṽ ≡ V −1:

JS = V ΛṼ , with (2.6a)

V =


| | | |
v1 . . . vn vn+1 . . . vm

| | | |

 =
(
Vs Vf

)
, (2.6b)

Λ =



λ1 0
. . . 0

0 λn

λn+1 0

0
. . .

0 λm


=

(
Λs 0

0 Λf

)
, (2.6c)

Ṽ =



− ṽ1 −
...

− ṽn −
− ṽn+1 −

...

− ṽm −


=

(
Ṽs

Ṽf

)
, (2.6d)

where v1, . . . , vm ∈ Rm represent the eigenvectors of JS and λ1, . . . , λm ∈ R the corresponding

eigenvalues contained in the diagonal matrix Λ ∈ Rm×m, for which it is assumed that they are

all real, negativ, and ordered from least negative to most negative. Thus, the local time scales

given by the inverse of the magnitudes of the eigenvalues 1
|λ1| , . . . ,

1
|λm| are ordered from slowest

to fastest. The system of ODEs dtz = S(z) can be rewritten as

dtz = JSz + g (2.7)

with g := S − JSz being the nonlinear part of S. Using y := Ṽ z yields

dty + Ṽ (dtV ) y = Λy + Ṽ g, (2.8)

or, equivalently, in EINSTEIN notation11

1

λi

dtyi + ṽi

m∑
j=1

(dtvj) yj

 = yi +
1

λi
ṽig, i = 1, . . . ,m, (2.9)

11When an index variable appears twice in a single term it implies summation of that term over all the values of the

index.

29



2. Spatially Homogeneous Systems: Slow Invariant Manifold Computation

being in an equivalent form to that of a singularly perturbed system (see Section 1.2) with
1

|λn+1| , . . . ,
1
|λm| representing the small parameter ε � 1. The assumption of equilibrated fast

dynamics (i.e. equating the left hand side of Equation (2.9) for i = n+ 1, . . . ,m to zero) leads

to

0 = yi +
1

λi
ṽig, i = n+ 1, . . . ,m, (2.10)

or, equivalently,

0 = ṼfS, (2.11)

defining the algebraic equation for the ILDM with Ṽf ∈ R(m−n)×m. Summing up, the ILDM

method reduces the kinetic model equation in form of a system of ODEs dtz = S(z) to the

following set of differential algebraic equations

Ṽsdtz = ṼsS (2.12a)

0 = ṼfS (2.12b)

with Ṽs ∈ Rn×m.

Consequently, the ILDM method is exact for linear systems (see e.g. [Pet03]) and, moreover,

it is shown in [KK02], that the ILDM approach in application to singularly perturbed systems

of ODEs identifies SIMs to order O(ε). A drawback of this method is that a solution of the

ILDM Equations (2.12) does not necessarily exist and if one exists, it is not necessarily unique.

Additionally, the resulting ILDM is generally not invariant.

2.1.4 Saddle Point Method (SPM)

Another SIM computation approach is the saddle point method (SPM) firstly described by

DAVIS and SKODJE in [DS99]. In this context, one-dimensional SIMs are approximated via

computation and connection of equilibria located both in physical and unphysical regions (e.g.

‘fixed points at infinity’) via heteroclinic orbits. This requires the use of projective geometry

with coordinate transformation

ui =
zi√

1 + |z|2
, i = 1, . . . ,m (2.13a)

um+1 =
1√

1 + |z|2
(2.13b)

from EUCLIDEAN space to the hyperbolic one. Here, infinity is um+1 = 0.

This method serves as the basis for the approach developed by AL-KHATEEB et al. [APP+09]

where a one-dimensional SIM is defined as heteroclinic orbit—a trajectory that connects two

30
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equilibria—that is locally attractive along the complete trajectory. In [MP13], this concept is

enhanced to the computation of one-dimensional manifolds of reactive systems including mi-

croscale diffusion effects.

2.1.5 Trajectory Based Optimization Approach (TBOA)

A detailed description of the trajectory based optimization approach (TBOA) originally pro-

posed by LEBIEDZ in [Leb04] is given in Section 2.2.

2.1.6 Zero–Derivative Principle (ZDP)

Another way to use species reconstruction for SIM computation and thereby model reduction

is the zero–derivative principle (ZDP) discussed in [GKK+05, ZGK+09]. The ZDP is based

on a fundamental principle analyzed in [Kre85] and annulates the derivatives of the non RPVs,

which can be formulated in the framework of this work (cf. (1.38)) as

Φ(z) = dνt zj(t)
∣∣∣
t=t∗

= 0, j /∈ Ifixed (2.14a)

dtz(t) = S (z(t)) (2.14b)

0 = g (z(t∗)) (2.14c)

zj(t∗) = zt∗j , j ∈ Ifixed. (2.14d)

The resulting POIapp z(t∗) =
(
zt∗j , h

app
(
zt∗j

))>
, j ∈ Ifixed should lie in a small neighbor-

hood of a SIM which is approached with increasing derivative order ν and thus, δerr → 0 for

ν →∞ as it is shown in [GKK+05, ZGK+09].

Operation of the ZDP can be illustrated by means of Linear Model (1.3a), (1.3b). As already

known, elimination of the fast modes characterizes the SIM. These fast modes are represented

by the second term of the sum c2e(−1−γ)t of the general analytic solution

z1(t) = c1e−t + c2e(−1−γ)t, c1, c2 ∈ R (2.15a)

z2(t) = c1e−t − c2e(−1−γ)t, (2.15b)

since they include the ‘fast eigenvalue’ −1− γ. Besides the fixation of the RPV (Ifixed = {2}),
an additional constraint Φ (z) = 0 is needed to obtain a specified trajectory—ideally leading

to the elimination of the fast modes (c2 = 0). This is achieved via the zero point of the ν th

derivative of the non RPV z1

dνt z1(t) = (−1)νc1e−t + (−1− γ)νc2e(−1−γ)t (2.16)
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(in the limit ν → ∞) where the corresponding eigenvalues of each mode is taken to the power

of ν. Solving Equation (2.14a) for c2 (c1 is fixed by fixation of the RPV) yields

c2 =
(−1)ν

(−1− γ)ν
· R (2.17)

with R being independent of ν. Since | − 1 − γ| > | − 1|, c2 → 0 for ν → ∞, meaning

a decreasing contribution of the fast mode for increasing value of ν. The resulting POIapp

z(t∗) =
(
happ

(
zt∗2
)
, zt∗2

)> results in (w.l.o.g. t∗ = 0)

z1 = happ(z2) = z2

(
1− 2

(−1)ν

((−1)ν + (−1− γ)ν)

)
(2.18)

showing that lim
ν→∞

happ(z2) = h(z2)(= z2) and thus, the POI on the SIM is identified by POIapp

for ν →∞.

The ZDP can be regarded as a generalization of the QSSA, the latter using ν = 1 as derivative

order in the ‘objective function’ (1.38a). This is illustrated by Figure 2.2, where δerr is plotted

against the derivative order ν for the ZDP (red curve) and the QSSA (blue line) applied to

the Linear Model (1.3a), (1.3b) with γ = 10.0 and z0
2 = 6.0. As visualized by the black

dashed line the error of accuracy of SIM computation δerr coincides for both methods at ν = 1.

Additionally, it can be seen that lim
ν→∞

δerr = 0, which points out an increasing accuracy of the

SIM computation with an increasing derivative order ν.

2.1.7 Invariant Constrained Equilibrium Edge Preimage Curves (ICE-PIC)

REN et al. introduced the invariant constrained equilibrium edge preimage curves (ICE-
PIC) approach for SIM computation in 2006 [RPV+06]. This method is based on an ICE

manifold which is the union of all reaction trajectories emanating from points of a constrained

equilibrium manifold. As the ICE-PIC manifold is constructed from reaction trajectories ema-

nating from the latter, it is invariant. Based on this ICE manifold a species reconstruction can be

done locally without having to generate the whole manifold in advance.

2.1.8 Functional Truncation Equation (FET)

In [RT06, Rou12], ROUSSELL and TANG were able to demonstrate the coincidence between

the ILDM method and their functional truncation equation (FET) approach. The operation

concept of FET is shown for a planar system

dtz1 = S1(z1, z2) (2.19a)

dtz2 = S2(z1, z2). (2.19b)
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Figure 2.2: The error of accuracy δerr concerning to the ZDP (red curve) and the QSSA (blue

line) applied to the Linear Model (1.3a), (1.3b) with tf = 0, γ = 10.0, and z0
2 = 6.0

designed as a function of ν.

The functional equation

S2(z1, z2) = S1(z1, z2)dz1z2 (2.20)

is constructed by substituting dtz2 = S1(z1, z2)dz1z2 into (2.19b). Differentiation of the Func-

tional Equation (2.20) with respect to z1 yields

dz1S2(z1, z2) = S1(z1, z2)d2
z1z2 + dz1S1(z1, z2)dz1z2. (2.21)

Motivated by the observation that the error in the ILDM method is directly related to the neglect

of curvature [KK02], which is proportional to d2
z1z2 here, Equation (2.21) becomes

dz1z2 (∂z1S1(z1, z2) + ∂z2S1(z1, z2)dz1z2) = ∂z1S2(z1, z2) + ∂z2S2(z1, z2)dz1z2

(2.22)

denoted by truncated equation. Thus, two Equations ((2.20) and (2.22)) in the two unknowns

z2, dz1z2 for every z1 are given allowing the computation of an approximation to the one-

dimensional manifold by using an iterative method to solve (2.20). The resulting manifold is
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called functional equation truncation approximated (FETA) manifold [RT06, Rou12]. Its

approximation of an one-dimensional SIM is valid insofar as d2
z1z2 is small.

Already KAPER and KAPER [KK02] pointed out the direct relation between the ILDM method

and the neglect of the curvature, which is used as a central idea in the above FET approach.

2.1.9 Stretching–Based Diagnostics (SBD)

ADROVER et al. [ACC+07, ACG+07] presented a method for SIM computation which is based

on a geometric characterization of local tangent and normal dynamics. This description find its

justification in the fact that flow along a SIM is slower than the attraction/repulsion to/from it.

The method uses a ratio r > 1 of the local stretching (contraction) rates for vectors orthogonal

to the SIM compared to those tangent to it. Then, this ratio is maximized w.r.t. z.

Again a two-dimensional system of ODEs is considered for demonstration

dtz = S(z) =

(
S1(z)

S2(z)

)
, z ∈ R2 (2.23)

possessing an one-dimensional SIM denoted byM. Under these circumstances, the stretching

ratio r is given by

r(z) :=
ων(z)

ωτ (z)
:=
〈JS(z(t)) · n̂(z), n̂(z)〉
〈JS(z) · Ŝ(z), Ŝ(z)〉

, z ∈M (2.24)

with Ŝ(z) := S(z)
‖S(z)‖2 , n̂(z) := n(z)

‖n(z)‖2 , n(z) := (S2(z),−S1(z))>, 〈·, ·〉 being the scalar

product, ‖·‖2 indicating the EUCLIDEAN norm, and JS(z) being the JACOBIAN of the right hand

side S(z) evaluated at z. Here, ωτ (z) and ων(z) denote the tangential and normal stretching

rates, respectively. The SBD method can be viewed as a local embedding technique: locally

projecting the dynamics onto the slowest directions. In the m−dimensional case (m > 2) the

tangential stretching rate is still given by

ωτ (z) = 〈JS(z) · Ŝ(z), Ŝ(z)〉 (2.25)

while the definition of normal stretching rates changes to

ων(z) = max
n̂∈NMz ,‖n̂‖2=1

〈JS(z) · n̂(z), n̂(z)〉 (2.26)

where the maximum is taken over all vectors n̂(z) belonging to the normal space NMz at z.

This value can be computed by the largest eigenvalue of a symmetric matrix (cf. [ACG+07]).
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2.1.10 Flow Curvature Method (FCM)

One last SIM computation approach presented here is the flow curvature method (FCM)
proposed by GINOUX [GRC08], comprising a species reconstruction that computes a special

(m − 1)-dimensional manifold, the flow curvature manifold, which is defined by the location

of the points at which the flow curvature vanishes. For an m-dimensional system of ODEs, the

zero point of the flow curvature of a trajectory curve is defined as

det
(
dtz, d2

t z, d
3
t z, . . . , d

m
t z
)

= 0 (2.27)

with z ∈ Rm, m ∈ N. Thus, Equation (2.27) performs the role of (1.38a) according to species

reconstruction (1.38). Replacing the flow curvature by its successive LIE derivatives (in a two-

dimensional system it is defined by the determinant of the first and third time derivatives) yields

successively in higher order approximations of the SIM (see [Ros86]). For singularly perturbed

systems, the analytic equation of the manifold resulting from matched asymptotic expansion in

singular perturbation theory [Jon95, Kap99], which is given by a regular perturbation expansion

in ε, equates with the FCM up to a suitable order in ε. The invariance property of the flow

curvature manifold can be shown via the DARBOUX invariance theorem [Dar78].

2.1.11 Interim Summary

In summary, a timeline is shown in Figure 2.3, where the presented SIM computation approaches

are arranged by the year of first publication. As one can see, the majority of the methods have

been presented during the last twenty years. The TBOA—belonging to the previous approaches

of the recent ones—is highlighted in red, since it plays an essential role in the context of this

work. Furthermore, the subsequent section deals extensively with its functionality.

1907 1913 1992 1999 2004 2005 2006 2007 2008

SPMQSSA PEA ILDM

TBOA

ZDP

ICE-PIC

FET

SBD

FCM

Figure 2.3: Timeline with SIM computation methods presented here arranged by year of first

publication.
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2.2 Trajectory Based Optimization Approach

In [Leb04], LEBIEDZ introduced the idea of a trajectory based optimization approach (TBOA)
for SIM computation in form of species reconstruction (1.39), where—in contrast to most com-

mon approaches—reaction trajectories are involved. For this point, the use of more global infor-

mation within the species reconstruction serves as fundamental motivation for the development

of yet another new SIM computation approach aiming at a reduced description of the kinetic

model equations. Furthermore, this approach was firstly formulated in form of an extremum

principle (cf. 1.39) acting as a further incentive to examine this kind of formulation for model

reduction applied to kinetic multiscale models. Thus, the TBOA was originally formulated as

(1.39) with

Φ(z) =

tf∫
t∗

Φ̃(z) dt, (2.28)

where the integrand Φ̃ should fulfill the following requirements:

• Applied to chemical combustion processes, Φ̃ should describe the extent of ‘chemical

forces’ in the evolution of reaction trajectories.

• The integrand Φ̃ should be computable from easily accessible data.

• The integrand Φ̃ should be (at least) twice continuously differentiable along reaction tra-

jectories.

Furthermore, Φ̃ should be at best consistent and δsym should be as small as possible (see 2.4.1

and 2.4.2) .

The way of proceeding of (1.39) together with (2.28) is demonstrated in Figure 2.4. The blue

curves represent pieces of different trajectories, all starting from zj(t∗) = zt∗j , j ∈ Ifixed and

integrated till t = tf . The integrand Φ̃ should ideally be chosen in a way that the minimal value

of (2.28) identifies the blue curve lying on the red SIM.

In order to find an exact criterion Φ̃, LEBIEDZ and REINHARDT developed and tested different

criteria, whereof the first was related to the entropy production. In this approach, a special

trajectory, the minimal entropy production trajectory (MEPT), is computed by minimizing

the sum of the entropy production rates of single reaction steps. The integrand Φ̃ is chosen as

Φ̃(z) =

mreac∑
r=1

dtEr (2.29)
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zj , j ∈ Ifixed

zj , j /∈ Ifixed

zt∗j

Figure 2.4: Schematic illustration of problem formulation (1.39) together with (2.28).

with

dtEr = R(Rr→ −Rr←) ln(Rr→Rr←
) (2.30)

and R being the gas constant12. The notations Rr→ and Rr← denote the forward and back-

ward reaction rates for an elementary reaction step r and dtEr is the entropy production rate

for reaction r. The results of this formulation have been less than satisfactory since the POIapps

emerged as very inconsistent (see 2.4.1) and thus, the MEPT does by far not coincide with a

SIM. In [Leb10], the idea of using entropy production for SIM computation is extended and

discussed with the definition of entropy in a mathematical sense.

The subsequent considerations to improve the choice of Φ̃ focused on the SIM being inter-

preted as a minimization of relaxing ‘forces’ along reaction trajectories. From the opposite

point of view, chemical forces are maximally relaxed along trajectories on a SIM. Regarding

NEWTONIAN mechanics, forces in turn are closely related to the concept of a curvature as it is

well-known from physics, especially from NEWTON’s second law

F = mGd2
t z (2.31)

12R = 8.314472 J
K·mol
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where F denotes the vector sum of the external forces acting on an object, mG the mass of the

object (constant in time), and d2
t z the second derivative of the state vector z of the object with

respect to time t. This second derivative of z contains information about the curvature of z and

thus, NEWTON’s second law describes a relation between force and curvature. Since the kinetic

model equations are given by dtz = S(z), the second time–derivative of the chemical compo-

sition z characterizing the rate of change of reaction velocity through relaxation (dissipation) of

chemical forces can be indicated as

d2
t z = dt (dtz) = JS(z) · S. (2.32)

This in turn is related to a directional derivative of the tangent vector of the curve z(t) with

respect to its own normalized direction w := dtz
‖dtz‖2 = S

‖S‖2

dαS (z(t) + αw)
∣∣∣
α=0

= JS (z(t)) · S (z(t))

‖S (z(t)) ‖2
(2.33)

with ‖·‖2 denoting the EUCLIDEAN norm. Hence, the preliminary optimization criterion is

chosen as

Φ̃(z) =
‖JS(z) · S‖2
‖S‖2

. (2.34)

The evaluation of this expression within the formulation of the objective functional (2.28) should

be a path integral along the trajectory

`(tf)∫
`(t∗)

Φ̃ (z (`(t))) d`(t) (2.35)

with `(t) being the EUCLIDEAN length of the curve z at time t given by

`(t) =

t∫
0

‖dτz(τ)‖2 dτ. (2.36)

This results in the reparameterization

d`(t) = ‖dtz(t)‖2 dt (2.37)

which cancels out ‖S‖2 in (2.34) yielding

Φ̃ (z(t)) = ‖JS (z(t)) · S (z(t))‖2 (2.38)

as objective functional integrand. In comparison with the entropy production as objective func-

tional, the results using the preceding formulation improved, but still emerged as inconsistent.

Many other suggestions for objective functions in the TBOA (1.39) together with (2.28) have
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been tested in [Leb06, LRS10, LRS+11, Rei08, RWD08], which still do not provide signifi-

cantly better results.

The above mentioned formulation comes with the drawback that the ‘length’ of the trajectory

part used in Optimization Problem (1.39) together with (2.28) is limited based on the attracting

equilibrium point. Based on this problem and with hope that ‘longer’ trajectory parts improve

the SIM computation, the reverse mode formulation has been developed in [LSU11]. Generally,

the subsequent optimization formulation comprises both, the upper formulation (called forward
mode) and the new reverse formulation:

min

tf∫
t0

‖JS(z) · S(z)‖22 dt (2.39a)

subject to

dtz(t) = S (z(t)) (2.39b)

0 = g (z(t∗)) (2.39c)

zj(t∗) = zt∗j , j ∈ Ifixed. (2.39d)

The integrand is squared to get a simpler analysis, having no remarkable effects on the solution of

the optimization problem. The forward and reverse mode arise from (2.39) by choosing t∗ = t0

and t∗ = tf , respectively. Analogously to Figure 2.4, where the forward mode is schematically

illustrated, Figure 2.5 demonstrates the reverse mode formulation, where—in contrast to the for-

ward mode—the ‘length’ of the trajectory part used in the optimization can be chosen arbitrarily

large by increasing tf − t0. And in fact, it turned out that the reverse mode identifies a SIM

exactly in the limit t0 → −∞, at least applied to simple test mechanisms as it is analytically

shown in [LSU11]. Numerical results applied to more realistic combustion mechanisms confirm

these conclusions [LS13, LS14, Sie13]. The examination of this reverse mode formulation and

elucidating why SIMs are exactly identified in the limit are important parts this work deals with.

The following local method has been used in [LS13, Sie13] and is motivated by numerical

efficiency, as the accuracy of SIM computation increases marginally in comparison with the

forward mode.

min ‖JS(z) · S(z)‖22
∣∣∣
t=t∗

(2.40a)

subject to

0 = g (z(t∗)) (2.40b)

zj(t∗) = zt∗j , j ∈ Ifixed. (2.40c)
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zj , j ∈ Ifixed

zj , j /∈ Ifixed

zt∗j

Figure 2.5: Schematic illustration of (2.39) with t∗ = tf (reverse mode).

Applied to (1.3a), (1.3b), the reverse mode optimization problem with Ifixed = {2} reads as

min

tf∫
t0

‖AAz‖22 dt (2.41a)

subject to

dtz(t) = Az (2.41b)

z2(tf) = ztf2 , (2.41c)

with A defined in (1.21). The corresponding POIapp results in

POIapp =
(
ztf2 (1 + χ) , ztf2

)
(2.42)

where an error term χ quantifes the deviation from the SIM z1 ≡ z2. Out of this δerr results in

δerr = |χztf2 |. (2.43)

The error term χ is computed in [LSU11] and reads as

χ =
2e(−1−γ)2tf − 2e−2γtf e−2t0

e−2γtf − ξe(−1−γ)2t0 + (ξ − 1)e(−1−γ)2tf
(2.44)

with ξ = 2+8γ+12γ2+8γ3+2γ4

−2−2γ . The relation between (2.43) and t0 is shown in Figure 2.6, where

tf = 0, γ = 10.0, and z0
2 = 6.0 is chosen equally to the situation of Figure 2.2. As can be seen,

δerr decreases exponentially with t0 → −∞.
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Figure 2.6: The error of accuracy δerr associated with Problem (2.41) with tf = 0, γ = 10.0,

and z0
2 = 6.0 as a function of t0.

2.3 Two Simple Test Models

As could already be seen in previous sections of this work, various issues have been demon-

strated for a better understanding via application to a simple example in form of a specific

right-hand side S(t) of the kinetic model equation. The two most important representatives are

the linear model presented (1.3a), (1.3b) and the two-dimensional, nonlinear DAVIS–SKODJE

model [DS99, SPP02], which has acquired a widespread publicity in the model reduction com-

munity. Briefly, and for ease of reference, the linear model is reviewed in the next part, followed

by the introduction of the DAVIS–SKODJE model.

2.3.1 Linear Model

The two-dimensional linear model used in this work is given by

dtz = Az, A =

(
−1− γ

2
γ
2

γ
2 −1− γ

2

)
∈ R2×2, (2.45)
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where γ > 0 measures the spectral gap and consequently the stiffness of the system of ODEs

(the stiffness grows with γ). As already seen in Section 1.2, the transformation into a singularly

perturbed system of ODEs is known and can be realized with ε = 1
γ+1 and z̃ = R−1z, R =(

cos π4 − sin π
4

sin π
4 cos π4

)
yielding

dtz̃1 = −z̃1 (2.46a)

εdtz̃2 = −z̃2. (2.46b)

As a direct consequence of FENICHEL’s invariant manifold theorem (Theorem 1.2.2) the ex-

istence of a SIM is guaranteed for small ε, which in this case is given by the eigenspace Λs

corresponding to the slowest eigenvalue λs = −1 of the system matrix A. Thus, the analytic

formula of the SIM with reference to (2.45) is given by the first bisectrix

z2 ≡ z1, (2.47)

which is plotted as red line in Figure 2.7, where the vector field of System (2.45) is shown for

two different values of γ. As can be seen, the SIM attracts system trajectories to a greater extent

in case of a larger value of γ.
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(a) γ = 1.0
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(b) γ = 10.0

Figure 2.7: Vector fields of (2.45) for two different values of γ. The eigenspace Λs, that coin-

cides with the SIM in this case, is depicted by the red line. The red dot, as is now

customary, represents the equilibrium.
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Considering the analytic solution of (2.45)

z1 = c1e−t + c2e(−1−γ)t, c1, c2 ∈ R (2.48a)

z2 = c1e−t − c2e(−1−γ)t, (2.48b)

the slow modes of the system are represented by the first term of the sum and the fast ones by

the second term since including the slow and fast eigenvalues −1 and −1− γ, respectively. As

already known, an exact model reduction method eliminates the fast modes of the system, mean-

ing c2 = 0 in this case, yielding z1 ≡ z2, wherefrom the species reconstruction function h arises.

A schematic illustration of what has been described above is shown in Figure 2.8, where model

reduction methods aim at a direct connection between the middle box on the left and the middle

one on the right. The upper and lower boxes are dashed, because neither the transformation

into a singularly perturbed system nor the analytic solution is available in general. Accordingly,

model reduction methods are highly inevitable. Obviously, the initial value problem

dtz1 =
(
−1− γ

2

)
z1 +

γ

2
z2 (2.49a)

dtz2 =
γ

2
z1 +

(
−1− γ

2

)
z2 (2.49b)

z1(t∗) = zt∗1 (2.49c)

z2(t∗) = zt∗2 (2.49d)

with the analytic solution

z1 =
zt∗1 + zt∗2

2
e−t +

zt∗1 − z
t∗
2

2
e(−1−γ)t (2.50a)

z2 =
zt∗1 + zt∗2

2
e−t − zt∗1 − z

t∗
2

2
e(−1−γ)t (2.50b)

corresponds to the reduced kinetic equations (middle box on the right side of Figure 2.8) and

their solutions are equivalent, if the initial value lies on the SIM (i.e. zt∗1 = zt∗2 ).

2.3.2 Davis–Skodje Model

It may happen that knowledge gained from a linear model cannot be generalized to nonlinear

ones, which is the reason for using additionally the DAVIS–SKODJE model [DS99, SPP02] for

different studies in this work. The ILDM method (see 2.1.3) serves as an example, as it yields

exact results when computing SIMs for linear systems of ODEs, but δerr 6= 0 in the nonlinear

case. The DAVIS–SKODJE model is widely used for analysis and performance tests of model

reduction techniques supposed to identify SIMs and reads

dtz1 = −z1 (2.51a)

dtz2 = −γ̃z2 +
(γ̃ − 1)z1 + γ̃z2

1

(1 + z1)2 (2.51b)
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dtz̃1 = −z̃1

εdtz̃2 = −z̃2

dtz1 =
(
−1− γ

2

)
z1 +

γ

2
z2

dtz2 =
γ

2
z1 +

(
−1− γ

2

)
z2

z1 = c1e−t + c2e(−1−γ)t

z2 = c1e−t − c2e(−1−γ)t

z1 = c1e−t

z2 = c1e−t

dtz1 = −z1

z2 = h(z1) = z1

dtz̃1 = −z̃1

z̃2 = 0

?

Figure 2.8: Schematic illustration of correlations between the full linear model and the reduced

one.

with γ̃ > 1 again measuring the spectral gap and consequently the stiffness of the system.

Typically, model reduction algorithms show a good performance for a large time scale separation

accompanied by a large value of γ̃ here, whereas small values of γ̃ impose a significantly harder

challenge on the computation of a SIM. Not only for the purpose of this adjustable time scale

separation but also the analytically assignable SIM

z2 = h(z1) =
z1

z1 + 1
(2.52)

justify the wide use of the DAVIS–SKODJE model for testing numerical model reduction ap-

proaches. One further advantage compared with most of the other nonlinear test models is the
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accessibility of an analytic solution given by

z1 = c̃1e−t (2.53a)

z2 = c̃2e−γ̃t +
c̃1

c̃1 + et
, c̃1, c̃2 ∈ R. (2.53b)

Once again, the vector field of Model (2.51) is plotted in Figure 2.9, where it can be recognized

that the SIM represented by the red curve attracts system trajectories to a greater extent in case

of a larger value of γ̃.
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Figure 2.9: Vector fields of (2.51) for two different values of γ̃. The SIM is depicted by the red

curve.

2.4 Error of Accuracy

The error of accuracy δerr as defined in Chapter 2 is given by the difference of the species

reconstruction function h and the approximated one happ resulting from the respective model

reduction method. The problem of this definition of the error is associated with the fact that δerr

is only computable if h and consequently the SIM is known, which generally is not the case.

As a result, it is impossible to quantify the accuracy of SIM approximation of the underlying

model reduction approach at first sight. Nevertheless, two approaches for making qualitative

statements about the quality of SIM approximation via using a specific SIM computing method

are presented and discussed in the following.

45



2. Spatially Homogeneous Systems: Slow Invariant Manifold Computation

2.4.1 Consistency

In [Rei08], one of these qualitative statements is presented based on the SIM property of attract-

ing nearby solution trajectories. Furthermore, a SIMapp should be an invariant manifold which

is related to the following consistency property being a kind of invariance test:

Consistency property: Suppose a trajectory z(·; zt∗) is identified from the solution of species

reconstruction (1.38) or (1.39). Take the values of the RPVs zj
(
t∗ + ∆t; zt∗

)
, j ∈ Ifixed

at some time t∗ + ∆t > t∗ on the trajectory as new fixed parameter values zj (tnew
∗ ) , j ∈

Ifixed for the same problem (1.38) or (1.39) and solve the species reconstruction problem

again. If the condition

z
(
t; zt

new
∗
)

= z
(
t+ ∆t; zt∗

)
(2.54)

holds with the solution and its associated trajectory z
(
·; ztnew

∗
)

of the second species recon-

struction, the species reconstruction with criterion Φ or Φ and its solutions—the POIapps

zt∗ and zt
new
∗ —are called consistent, otherwise inconsistent.

The consistency property is illustrated in Figure 2.10 with the help of a two-dimensional exam-

ple: a species reconstruction is solved for a fixed value of the RPV zt∗1 , wherefrom the POIapp

and the associated trajectory z (·; POIapp) arises. At a later point in time, the RPV is fixed to

zt∗1 and the same species reconstruction is solved again, resulting in either the POIapp or the

POIapp, according to whether an inconsistent or a consistent criterion is used. In contrast to

the consistent case, in the inconsistent one, the trajectory z (·; POIapp) does not coincide with

z (·; POIapp).

The consistency property is a helpful one in case of simple test problems consisting of a low-

dimensional system of ODEs, where it can be seen via ‘eye inspection’ if the criterion used in

the species reconstruction is consistent or inconsistent. If an inconsistent species reconstruction

is identified, δerr 6= 0 and thus, the underlying approach is not exact. This is visualized in Figure

2.11(a), where the operation of the ‘eye inspection’ of the consistency property is demonstrated.

The red curve is the (usually not known) SIM and the black crosses are the POIapps computed

with an inconsistent species reconstruction, wherefrom the associated trajectories (black lines)

emanate. As an inconsistent criterion is used, the SIMapp is not invariant and consequently

the SIM is not identified correctly by the POIapps. Vice versa, a consistent criterion does not

necessarily imply an exact method as shown in Figure 2.11(b), where all POIapps lie on the same

invariant solution trajectory (not the SIM). In this case, the underlying species reconstruction is

consistent, but the SIM is not identified at all. Certainly, this situation is more fictious than real,

but not impossible. Consequently, the consistency property is necessary, but not sufficient.
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z1

z2

POIapp

z(t; )POIapp

POIapp

POIapp

z(t; )POIapp

z
t∗

1z
t∗

1

Figure 2.10: Schematic illustration of the consistency property.

2.4.2 Symmetry

A second approach to analyze the quality of SIM approximation based on ideas of LEBIEDZ and

subsequent ideas of the author is presented in this work for the first time. An exact criterion for

SIM point computation can be interpreted in the context of symmetry issues on an abstract level:

as indicated previously, the result of a species reconstruction for given RPVs, parameterizing the

SIM is a point in full state space—the POIapp. The SIM regarded as an intrinsic analytic object

in state space should be coordinate independent, e.g. for any other choice (same total number)

of RPVs the computed POIapp should coincide with the previous one. Thus, another necessary

condition for an exact criterion characterizing the SIM is to yield POIapp results invariant under

permutation of progress variables. Consequently, if a given species reconstruction within this

permutation does not arise in the same SIMapp, it can be safely concluded that the underlying

species reconstruction is not exact. Accordingly, the SIM acts as a kind of symmetry axis.

For the sake of comprehensibility and simplicity, the above mentioned symmetry aspect is

demonstrated with a two-dimensional example (see Figure 2.12). First and without loss of

generality, z1 is chosen as RPV and fixed at z1(t∗) = zt∗1 . The result of a non-exact species
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z1

z2

(a) The consistency property: Since the POIapps are in-

consistent (‘eye inspection’), the SIMapp is not invariant

and consequently does not coincide with the SIM.

z1

z2

(b) A consistent criterion does not necessarily imply an

exact method.

Figure 2.11: Examples of the consistency property. The red curve represents the SIM and the

black crosses the POIapps, wherefrom the associated trajectories emanate (black

cruves).

reconstruction is the POIapp
(
zt∗1 , h

app
(
zt∗1
))

(blue cross) lying not on the SIM (red curve).

Subsequently, the non RPV values of this POIapp are chosen for the new selection of progress

variables zt∗2 := happ
(
zt∗1
)

and the same species reconstruction applied yields another POIapp,

namely
(
happ

(
zt∗2
)
, zt∗2

)
. The difference of this two POIapps is denoted by δsym and serves as

a measure for the accuracy of the SIM approximation, or more specifically, if an exact species

reconstruction is used, it can be concluded that δsym ≡ 0 for all choices of RPVs. Conversely,

this condition does not provide a sufficient condition for an exact criterion in general, whereat

the subsequent quotation of LEBIEDZ is very appropriate:

“For a reasonable choice of the criterion used in the species reconstruction the sym-

metry aspect provides an almost sufficient condition for an exact SIM identification

criterion.”

This sounds highly vague, but for probably all common species reconstruction approaches it

proves to be true, that δsym ≡ 0 for all choices and values of RPVs provides an exact criterion.

As already announced in Subsection 2.1.6, the ZDP represents an exact species reconstruction,
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Figure 2.12: Schematic illustration of the symmetry property.

in the limit m→∞. Applied to the Linear Model (2.45), the POIapp results in

POIapp =

(
z0

2

(
1− 2

(−1)m

((−1)m + (−1− γ)m)

)
, z0

2

)
(2.55)

for z2(0) = z0
2 as known from (2.18). Using

z0
1 := z0

2

(
1− 2

(−1)m

((−1)m + (−1− γ)m)

)
(2.56)

as new RPV value for the same ZDP species reconstruction yields

POIapp =

(
z0

1 , z
0
1

(
1− 2

(−1)m

((−1)m + (−1− γ)m)

))
(2.57)

as new POIapp, which in turn leads to

δsym = z0
2

(
1−

(
1− 2

(−1)m

((−1)m + (−1− γ)m)

)2
)

(2.58)

by applying (2.56). It is not difficult to see that δsym → 0 for m → ∞ comprising POIapp≡
POIapp≡ POI and thus, an exact species reconstruction criterion turned out, at least in the limit.

Normal Form

The interpretation of a SIM as symmetric manifold is emphasized by the transformation of the

kinetic system equations into some kind of a normal form (cf. FENICHEL normal form [Jon95]),
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where the whole dynamic is projected onto the section being available after fixation of the RPVs.

Generally, this transformation cannot be specified for a system of ODEs, whereas this work

innovatively demonstrates the procedure with the help of the linear model (cf. 2.3.1) and the

DAVIS–SKODJE one (cf. 2.3.2).

Linear Model: The analytic solution of the Linear Model (2.45) is given by

z1 = c1e−t + c2e(−1−γ)t, c1, c2 ∈ R (2.59a)

z2 = c1e−t − c2e(−1−γ)t. (2.59b)

Via z2(t) = z∗2 yielding c1 = z∗2et + c2e−γt the z2–dynamic is projected onto the z2 =

z∗2 = const. section. Substitution into (2.59a) results in

z1(t) = z∗2 + 2c2e(−1−γ)t (2.60)

where it can be seen, that lim
t→∞

z1(t) = z∗2 and thus, the SIM z1 ≡ z2 is identified exactly

in the limit. Accordingly, the associated ODE that belongs to (2.60) is given by

dtz1 = (−1− γ)z1 + (1 + γ)z∗2 (2.61)

whose solutions are depicted in Figure 2.13 for different values of z∗2 . As initial condi-

tion, z1(0) = 0 is chosen (blue crosses). It is observable, that the respective solution

trajectories (blue lines) converge towards the SIM (red line) along the z∗2–axis. In order

to emphasize the symmetry property of the SIM, the magenta colored lines represent the

same results for exchanged z1 and z2.

Davis–Skodje Model: The same procedure applied to the nonlinear DAVIS–SKODJE test model

(2.51) with z1(t) = z∗1 yields

z2 = c̃2e−γ̃t +
z∗1

z∗1 + 1
(2.62)

and again, lim
t→∞

z2 = h(z∗1). The associated ODE results in

dtz2 = −γ̃z2 + γ̃
z∗1

z∗1 + 1
(2.63)

and the appropriate trajectories are plotted in Figure 2.14 (blue lines) as solutions of the

initial value problem (2.63) together with z2(0) = 0 (blue crosses) for different values of

z∗1 . The SIM h(z1) = z1
z1+1 is visualized as red curve, whereto the trajectories converge

for t → ∞. Here, the exchange of z1 and z2 is not feasible, since (2.51a) is decoupled

from (2.51b).

As can be seen, this transformation provides an exact criterion for SIM identification or the

closely related model reduction. Unfortunately, as previously mentioned, this transformation is

not known for general systems of ODEs.
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Figure 2.13: Visualization of the normal form applied to the Linear Model (2.45).

2.5 Selection of Reaction Progress Variables

As already mentioned, the choice of the RPVs in the context of species reconstruction is a

still unresolved problem, although it is of major significance to SIM computation problems.

Based on the symmetry aspect of a SIM presented in 2.4.2, the question which variable should

be selected as RPV is less critical than the question how many variables should be chosen.

Naturally, concerning the first point, there are choices performing better than others in numerical

applications depending on characteristics of the SIM like monotonity and others, but an exact

criterion is independent of the choice of the RPVs in the broadest sense. Several approaches

that deal with this issue can be found in [Sie13]. On the other hand, the determination of the

number of RPVs and the herewith associated dimension of the SIM that is computed is of greater

significance, since it determines the extent of reduction of the original kinetic model equations.

Since the reduced model should contain the slow modes of the system, the number of RPVs

should be directly related to the time scales. These (local) time scales are

τi =
1

|R(λi)|
, i = 1, . . . ,m, (2.64)
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Figure 2.14: Visualization of the normal form applied to the DAVIS–SKODJE test model (2.51).

where λi represent the eigenvalues of the JACOBIAN JS of the right hand side of the dynamics

at point z∗ in phase space and R(λi) denotes the real part of these eigenvalues. Small and

large time scales τi correspond to fast and slow directions in phase space, respectively. For an

increasing ordering of the time scales 0 = τ0 ≤ τ1 ≤ · · · ≤ τm, the differences

∆τi := τi − τi−1, i = 1, . . . ,m (2.65)

measure the corresponding gap. Therefore, a large spectral gap should be chosen such that

#Ifixed = m−ι+1 with ι being the index of the largest ∆τi. In addition to these time scales, the

singular values of the JACOBIAN of the source term (square roots of the eigenvalues of the sym-

metric matrix J>S JS) as well as the finite time LYAPUNOV exponents (see [MBI03, MTA+08])

can also serve as criterion how many RPVs should be chosen.

For demonstration purposes a three-dimensional linear model is derived where the time scales

and thus the spectral gaps can be modified by varying different parameters. This model is given

by

dtz = Bz, z ∈ R3 (2.66)
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with

B := R1R2


−1 0 0

0 −1− γ1 0

0 0 −1− γ2

R−1
2 R−1

1

=


−1− γ1

4 −
γ2

2

√
2

4 γ1 −γ1

4 + γ2

2√
2

4 γ1 −1− γ1

2

√
2

4 γ1

−γ1

4 + γ2

2

√
2

4 γ1 −1− γ1

4 −
γ2

2


(2.67)

where the rotation matrices R1 and R2 are defined by

R1 :=


cos π4 0 − sin π

4

0 1 0

sin π
4 0 cos π4

 , R2 :=


cos π4 − sin π

4 0

sin π
4 cos π4 0

0 0 1

 (2.68)

and γ1, γ2 > 0 represent the above mentioned parameters by which the spectral gaps can be

adjusted. By assuming γ2 > γ1 the time scales are in an ordered selection such that λ1 = −1

represents the eigenvalue belonging to the largest time scale and λ3 = −1 − γ2 the eigenvalue

belonging to the slowest one. As a consequence, the spectral gaps refer to γ1 and γ2 − γ1,

respectively, meaning that for γ1 > γ2− γ1 the number of RPVs should be chosen as #Ifixed =

1, whereas #Ifixed = 2 should be chosen in case of γ1 < γ2−γ1. Incidentally, the corresponding

analytic solutions read

z1(t) = ĉ1e−t + ĉ2e(−1−γ1)t + ĉ3e(−1−γ2)t (2.69a)

z2(t) =
√

2ĉ1e−t −
√

2ĉ2e(−1−γ1)t (2.69b)

z3(t) = ĉ1e−t + ĉ2e(−1−γ1)t − ĉ3e(−1−γ2)t (2.69c)

with ĉ1, ĉ2, ĉ3 ∈ R.

A qualitative statement about the dimension of the SIM that should be chosen can be done if a

measure for the attraction of a phase space point is accessible. A reasonable choice for this is

Ξ :=
‖JS · Ŝ‖22
‖JS · n̂‖22

∈ R+ (2.70)

which is a slightly modified version of the SBD (cf. 2.1.9) and minimal, to some extent, on

the SIM. The following Table 2.1 depicts values of Ξ applied to (2.66), (2.67), 2.68) for two

different scenarios:

1. γ1 = 10, γ2 = 11: this case provides γ1 > γ2 − γ1 and thus, a one-dimensional SIM

should be selected as reduced model.
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2. Spatially Homogeneous Systems: Slow Invariant Manifold Computation

Table 2.1: Values of Ξ applied to Model (2.66) for different points in phase space. Points on the

1D-SIM are highlighted in red.
1.0607

0.5000

1.0607




1.0607

1.5000

1.0607




1.0607

5.0000

1.0607




0.3536

0.1000

0.3536




0.3536

0.5000

0.3536




0.3536

1.0000

0.3536


γ1 = 10

γ2 = 11
24.2070 0.0083 27.1891 37.2405 0.0083 12.1087

γ1 = 2

γ2 = 11
1.8889 0.1111 2.1090 2.8460 0.1111 1.0000

2. γ1 = 2 , γ2 = 11: this case provides γ1 < γ2 − γ1 and thus, a two-dimensional SIM

should be selected as reduced model.

The red colored columns represent values on the one-dimensional SIM (z2 =
√

2z1, z3 = z1)

being at best at their minimal possible values, at least if an exact criterion is assumed. As can be

seen, the differences between the values of Ξ (representing a reasonably working measure for the

attractivity of a trajectory point) on the SIM and the values of Ξ lying elsewhere are immensely

larger in the first scenario meaning that points on the SIM are much more attractive compared to

points beyond. These differences serve as an indication that the one-dimensional SIM as reduced

model is more appropriate in the first case conforming with the considerations above. On the

basis of these values evaluated at a grid of the whole phase space it should be possible to decide

where the largest spectral gap is and how many RPVs should be selected for SIM computation.

On the one hand, this strategy is difficult to put into practice based on, inter alia, numerical

effort, on the other hand, the idea of this strategy can be useful to develop numerically more

efficient strategies for identifying the appropriate number of RPVs and therefore the associated

dimension of the SIM that is computed.

2.6 A Multitude of Slow Invariant Manifold Computation

Methods—No Common Denominator?

First of all, it has to be mentioned, that this section contains parts of the manuscript [LU14].

As indicated previously in Chapter 2.1, there are plenty of species reconstruction approaches

all pursuing the same objective, namely the computation and, at best, identification of SIMs

for using them as reduced description of the full kinetic model equations. The obvious move is

therefore to find fundamental basic concepts underlying, combining, and collecting those several

model reduction methods—that seem to look quite different at first glance—in order to develop a

novel advanced species reconstruction making use of such basic concepts in concentrated form.
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In this context, improvements should emerge in terms of accuracy of SIM approximation as well

as numerical effort. Initial tendencies towards this direction are processed in this work and will

be discussed in the following.

2.6.1 Derivative–of–the–State–Vector–Concept for SIM Computation

One of the species reconstruction techniques listed in 2.1, the ZDP (cf. 2.1.6), provides an exact

criterion, at least in the limit ν → ∞, where ν is the derivative order of the non RPVs with

respect to time t. It is precisely this time derivative of the state vector z ∈ Rm or a subset hereof

that appears more or less obviously in several SIM computation approaches:

• The QSSA (cf. 2.1.1) (and consequently the direct related PEA (cf. 2.1.2)), for instance,

are representatives thereof, since dν=1
t zj , j ∈ {1, . . . ,m} is used as criterion for SIM

approximation. Accordingly, the QSSA with general derivative order ν in turn corre-

sponds to the ZDP approach. Obviously, the accuracy of SIM approximation increases

with increasing ν such that the QSSA with ν = 1 does not provide a highly accurate

approximation.

• Another species reconstruction making considerably use of the time derivative of the state

vector is the FCM (cf. 2.1.10) where a SIMapp is computed by using dαt z, α = 1, . . . ,m

or, more precisely, det
(
dtz, d2

t z, d
3
t z, . . . , d

m
t z
)

= 0. Here, for singularly perturbed sys-

tems (cf. 1.2) the resulting analytic formula for the SIMapp coincides with the asymptotic

perturbation expansion (1.33) up to orderm−1 in ε. This is not surprising taking account

of the fact that the ZDP provides a coincidence up to order ν − 1. Furthermore, according

to personal communication with GINOUX, it holds that det
(
dtz, d2

t z, d
3
t z, . . . , d

m−1
t z, dm+υ

t z
)

=

0 identifies the exact SIM in the limit υ →∞. Here again the time derivative of the state

vector seems to play the central role for SIM computation.

• Additionally, the SBD (cf. 2.1.9) and the TBOA (cf. 2.2), regardless of reverse/forward

mode (2.39) or local formulation (2.40), make use of JS · S which corresponds to dν=2
t z

(see (2.32)), the second time derivative of the state vector. Both approaches—the SBD

and the TBOA—provide quite good, but no exact approximations to the SIM. Once again,

δerr can be decreased by increasing the derivative order of the state vector in the respective

approach.

• Even in the FET approach (cf. 2.1.8) assumptions are made concerning the curvature and

consequently the second derivative of the state vector. Based on the direct relation to the

ILDM (cf. 2.1.3), both approaches can be categorized into those methods making use of

the derivative of the state vector.
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2. Spatially Homogeneous Systems: Slow Invariant Manifold Computation

• Last but not least, this concept of using any kind of state vector derivative occurs also par-

tially in the SPM (cf. 2.1.4), where equilibria are computed via using dν=1
t z (see Section

1.1).

In summary, it is possible to state that in most instances the occurrence of dνt z in (1.38) or

(1.39) makes a significant contribution regarding the improvement of SIMapp, at least for vari-

able values of ν, since ν → ∞ provides an exact identification of the SIM. Consequently, one

fundamental concept underlying serveral SIM approximation approaches has emerged, desig-

nated by derivative–of–the–state–vector–concept.

An example of a species reconstruction using this derivative–of–the–state–vector–concept is the

following optimization problem

min ‖dνt z‖
2
2

∣∣∣
t=t∗

(2.71a)

subject to

dtz(t) = S (z(t)) (2.71b)

zj(t∗) = zt∗j , j ∈ Ifixed. (2.71c)

Its application to the linear model from 2.3.1 with γ = 0.5 and Ifixed = {2} is demonstrated in

Figure 2.15. For zt∗2 = 5.0 the results for different values of ν are visualized by the blue crosses,

which approximate the red SIM better for increasing value of ν and the POIapps approach the

SIM for ν →∞.

On the one hand, although this derivative–of–the–state–vector–concept entails important theo-

retical results, numerical applications exhibit major problems when using ν > 2, which is why

other fundamental concepts would be helpful, and on the other hand, the question of why the

reverse mode of the TBOA identifies the SIM for t0 → −∞ has still not yet been answered. The

latter leads to the concept of a boundary value problem.

2.6.2 Theory of Two-Point Boundary Value Problems

Assume a system of m ODEs to be given by

dtz = S(z), S : Ω ⊂ Rm → Rm, z : I ⊂ R→ Rm, t ∈ I, (2.72)

where the right hand side S is assumed to be smooth. In order to determine a specific solution

trajectory of (2.72), the components of the state vector z have been specified at the same value of

the independent variable t = t0 ∈ I so far. In contrast to this IVP, it is conceivable to determine
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Figure 2.15: Demonstration of the derivative–of–the–state–vector–concept applied to the linear

model (cf. 2.3.1) with γ = 0.5.

the state vector components at more than one value. The resulting equations are labeled bound-
ary conditions and define together with (2.72) a boundary value problem (BVP). Accordingly,

a two-point BVP can be formulated as

dtz = S(z) (2.73a)

G (z(t0), z(t∗)) = 0 (2.73b)

with a sufficiently smooth function G : Ω × Ω → Rm. Thus, the componental description of

(2.73b) reads as

G1 (z1(t0), . . . , zm(t0), z1(t∗), . . . , zm(t∗)) = 0

G2 (z1(t0), . . . , zm(t0), z1(t∗), . . . , zm(t∗)) = 0

...

Gm (z1(t0), . . . , zm(t0), z1(t∗), . . . , zm(t∗)) = 0.

(2.74)
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If boundary conditions are formulated linearly, the function G can be written as

G (z(t0), z(t∗)) = Bt0z(t0) +Bt∗z(t∗)︸ ︷︷ ︸
≡Bz(t)

−β (2.75)

with constant matrices B, Bt0 , Bt∗ ∈ Rm×m and a right hand side β ∈ Rm. It can be assumed

w.l.o.g. that β = 0, since the inhomogeneous case (i.e. β 6= 0) can be reduced to the homoge-

neous one (i.e. β = 0) if13 rk
(
Bt0

∣∣∣Bt∗) = m by construction of z̄ ∈ C1 (I,Rm) with Bz̄ = β

and solving the following homogeneous BVP for ζ := z − z̄:

dtζ = dtz − dtz̄ = S(z)− dtz̄ = S(ζ + z̄)− dtz̄ =: S(ζ) (2.76a)

Bζ = Bz − Bz̄ = β − β = 0. (2.76b)

A special case of linear boundary conditions occurs if each of the m Equations (2.75) contains

only components of z evaluated at one of the two boundary points t0 and t∗. Assumed that only

t0 occurs in p (1 < p < m) equations and consequently only t∗ in the other q ≡ m − p ones,

Bt0 and Bt∗ result in (after a possible reordering of the equations)

Bt0 =

(
B

(1)
t0

0

)
, Bt∗ =

(
0

B
(2)
t∗

)
(2.77)

with B(1)
t0
∈ Rp×m and B(2)

t∗ ∈ Rq×m. Boundary conditions (2.75) with Bt0 and Bt∗ in form of

(2.77) are referred to as completely separated. Especially, for B(2)
t∗ ≡ 0 an IVP (see 1.1) arises

implying that IVPs are specific BVPs. In the further course of this work it is provided that

rk
(
Bt0

∣∣∣Bt∗) = m (2.78)

being a necessary condition concerning the solvability of a two-point BVP (2.73) including lin-

ear boundary conditions (2.75).

The Linear Model (2.45) together with

z2(t∗) = zt∗2 , z1(t0) = zt01 , zt∗2 , z
t0
1 ∈ R (2.79)

serves as representative of a two-point BVP with completely separated boundary conditions,

where p = q = 1, B(1)
t0

=
(

1 0
)
, B

(2)
t∗ =

(
0 1

)
, and β =

(
zt01 zt∗2

)>
in (2.75) and (2.77).

Furthermore, condition (2.78) holds, since

(
Bt0

∣∣∣Bt∗) =

(
1 0

0 0

∣∣∣∣∣0 0

0 1

)
∈ R2×4 (2.80)

13rk(A) denotes the rank of a matrix A.
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has rank 2.

A solution to a BVP is a solution to the system of ODEs that also satisfies the associated bound-

ary conditions. On the other hand, verification of existence and uniqueness to solutions of a

BVP is generally much more demanding than in the IVP case. Indeed, there is no general the-

ory. BVPs can have one, none, or even infinitely many solutions. However, there is a vast

literature on individual cases (see [BL74]). Generally, it can be stated that the two-point BVP

(2.73) has as many solutions as there are zeros of

F (s) := G (s, z (t∗; s)) = 0, s ∈ Rm (2.81)

where z (t∗; s) is the solution of the IVP dtz = S(z), z(t0) = s evaluated at t = t∗. Never-

theless, some requirements provided, an existence and uniqueness theorem for two-point BVPs

(2.73) with linear boundary conditions (2.75) can be stated.

Theorem 2.6.1 (Existence and Uniqueness Theorem for Two-Point BVPs with Linear Bound-

ary Conditions). Let the function S ∈ C (Ω,Rm) be LIPSCHITZ continuous with LIPSCHITZ

constant L, Bt0 +Bt∗ being an invertible matrix, and it holds that

(t∗ − t0)
∥∥∥(Bt0 +Bt∗)

−1
∥∥∥
∞

max (‖Bt0‖∞ , ‖Bt∗‖∞)L < 1. (2.82)

Then a unique solution in C1 (I,Rm) to the two-point BVP

dtz(t) = S (z(t)) , S : Ω ⊂ Rm → Rm, z : I ⊂ R→ Rm, t ∈ I (2.83a)

Bz(t) = Bt0z(t0) +Bt∗z(t∗) = 0, B, Bt0 , Bt∗ ∈ Rm×m (2.83b)

exists.

Proof. See [Bey14].

In brief summary this means: if

• Bt0 +Bt∗ is invertible

• S(·) LIPSCHITZ continuous

• [t0, t∗] sufficiently short (see (2.82))

then the two-point BVP (2.83) can always be solved uniquely.
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2.6.3 Boundary–Value–Concept for SIM Computation

The second fundamental concept different species reconstruction methods make use of in order

to compute SIMs exploits the property of asymptotic stability (see 1.1) of SIMs. Provided that a

SIM is globally asymptotically stable, every trajectory approaches it on an infinite time horizon.

In dissipative systems of ODEs characterized by

ρ (SIM, z(t0))

(
:= inf

y∈SIM
‖y − z(t0)‖

)
> ρ

(
SIM, z

(
t∗; z

0
))
, t0 < t∗ (2.84)

with z
(
t∗; z

0
)

being the solution of the IVP dtz = S(z), z(t0) = z0 evaluated at t = t∗, a SIM

is exactly identified for t∗ − t0 →∞ and ρ (SIM, z(t0)) ∈ R:

ρ
(
SIM, z

(
t∗; z

0
))

= 0. (2.85)

The stated designations are visualized in Figure 2.16 with the two-dimensional linear model

from 2.3.1, where the red line represents the one-dimensional SIM and the blue curve an arbi-

trary trajectory.

Having this in mind, the following novel general formulation of a boundary value problem for

SIM computation is valid

dtz = S(z) (2.86a)

zj(t∗) = zt∗j , j ∈ Ifixed, t∗ ∈ I ⊂ R (2.86b)

zj(t0) = zt0j , j /∈ Ifixed, t0 ∈ I ⊂ R (2.86c)

where three different scenarios are conceivable:

• t0 < t∗ Reverse Mode

• t0 = t∗ Local Mode

• t0 > t∗ Forward Mode

Existence and uniqueness of a solution of BVP (2.86) is guaranteed by Theorem 2.6.1 for suf-

ficiently small t∗ − t0. Once again, a symmetric issue of the SIM already addressed in 2.4.2

is apparent, since replacing the RPVs by the non RPVs and vice versa yields an analog BVP

with reversed roles of t0 and t∗. Compared with the general form of a species reconstruction

problem (1.38), Φ in (1.38a) is represented by (2.86c) or rather by zj(t0)− zt0j , j /∈ Ifixed in the

boundary value formulation (2.86). Especially this zt0j has not yet been specified at all, which is,

however, the crucial issue in (2.86). For globally asymptotically stable SIMs the determination

of zt0j , j /∈ Ifixed is without particular significance to identify a SIM exactly, since no problem
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Figure 2.16: Visualization of the basic designations serving as basic idea of the boundary–value–

concept.

arises by increasing t∗ − t0 in the reverse mode with fixed zt∗j , j ∈ Ifixed. In contrast, in realis-

tic chemical combustion models, for instance, additional physical constraints restrict the domain

where the model equations in form of a system of ODEs are defined with the result that the spec-

ification of zt0j , j /∈ Ifixed has a significantly greater importance. It is exactly this specification

that distinguishes between several species reconstructions making use of this boundary–value–

concept. Before listing up some representatives of this concept, the functionality of BVP (2.86)

is demonstrated with application to the linear model described in 2.3.1 as well as the nonlinear

DAVIS–SKODJE model from 2.3.2.

BVP (2.86) Applied to Linear Model (2.45)...

...Analytically: The fixation of the PRVs (2.86b) applied to the Linear Model (2.45) with its

analytic solution given by (2.48) and Ifixed = {2} yields

z2(t∗) = zt∗2 = c1e−t∗ − c2e(−1−γ)t∗ (2.87)
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where c1(c2) can be computed as

c1(c2) = zt∗2 et∗ + c2e−γt∗ . (2.88)

Substituting into Equation (2.86c) with application of (2.48a) results in

z1(t0) =
(
zt∗2 et∗ + c2e−γt∗

)
e−t0 + c2e(−1−γ)t0 = zt01 (2.89)

out of which an analytic formula for c2 is obtained, namely

c2 =
zt01 − z

t∗
2 et∗e−t0

e−γt∗e−t0 + e(−1−γ)t0
. (2.90)

Thus, the free variable of the POIapp computed by the BVP (2.86) arises as

z1(t∗)
(

= c1e−t∗ + c2e(−1−γ)t∗
)

= zt∗2

1 +
2
z
t0
1

zt∗2
e(−2−γ)t∗et0 + 2e(−1−γ)t∗

e(−1−γ)t∗ + e−t∗e−γt0

 , (2.91)

where it can be seen that(
lim
γ→∞

z1(t∗) = zt∗2

)
(2.92a)

lim
t0→−∞

z1(t∗) = zt∗2 (2.92b)

holds for every zt01 ∈ R and t0 < t∗, i.e. in the reverse mode. The one-dimensional SIM of the

Linear Model (2.45) is known as first bisectrix (z1 ≡ z2), it is identified exactly by BVP (2.86)

for t0 → −∞, independently of the specification of zt01 . This is based, as already mentioned, on

the global asymptotic stability of the SIM and the omission of additional constraints that restrict

the area where the model equations are defined.

...Numerically: Numerical experiments have been performed using bvp4c, a BVP solver for

systems of ODEs used in Matlabr utilizing a finite difference code that implements a colloca-

tion formula. Problem (2.86) is implemented for the Linear Model (2.45) with z2(t∗) = zt∗2 =

5.0, t∗ = 0.0, zt01 = 0.0, and t0 varies between −2.0 and −20.0—all of them arbitrarily chosen

values. For Figure 2.17(a), γ = 0.2 is chosen—representing an almost total lack of time scale

separation—and the blue rhombi show δerr resulting from the numerical solution of the BVP

(2.86) corresponding to the different values of t0. With decreasing t0, z1(t∗ = 0.0) converges

to z1(0) = z0
2 = 5.0 meaning that the SIM approximation improves and thus, δerr decreases

considerably in view of the provided spectral gap. The red dashed curve visualizes the analytic

error from Equation (2.91) where it can be seen, as one might expect, that analytic error formula

and numerical results coincide since the blue rhombi are located along the red dashed curve. In

Figure 2.17(b) same results for γ = 2.0 are plotted, where the convergence towards δerr = 0.0

is much more steeper based on the larger (but still relatively small) time scale separation repre-

sented by γ.
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Figure 2.17: Error of accuracy δerr of the POIapp z(t∗ = 0.0)—resulting from the BVP (2.86)

applied to the Linear Model (2.45) with two different values of γ—as a function

of t0. The blue rhombi represent numerical results, whereas the red dashed curve

illustrates the analytic error (2.91).

BVP (2.86) Applied to Davis–Skodje model (2.51)...

...Analytically: The same procedure as done before by means of the Linear Model (2.45) is now

applied to the nonlinear DAVIS–SKODJE test problem (2.51) where the analytically calculated

SIM is given by (2.52) and the solution of the model equations by (2.53). With Ifixed = {1}, the

boundary values

z1(t∗) = zt∗1 (2.93a)

z2(t0) = zt02 (2.93b)

complete (2.51) to achieve the BVP that has to be solved. The expressions (2.53a) and (2.93a)

result in

c̃1 = zt∗1 et∗ (2.94)

which, substituted into (2.93b), yields (using (2.53b))

c̃2 = zt02 eγ̃t0 − zt∗1 eγ̃t0

zt∗1 + et0e−t∗
. (2.95)

Herewith, the POIapp results in

z(t∗) =

 zt∗1
zt∗1
zt∗1 +1

+ zt02 eγ̃t0e−γ̃t∗ − zt∗1 eγ̃t0e−γ̃t∗

zt∗1 +et0e−t∗

 (2.96)
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which also implies that(
lim
γ̃→∞

z2(t∗) =
zt∗1

1 + zt∗1

)
(2.97a)

lim
t0→−∞

z2(t∗) =
zt∗1

1 + zt∗1
(2.97b)

holds for every zt02 ∈ R and t0 < t∗.

...Numerically: The same numerical experiment as in the linear model case is applied to the

nonlinear DAVIS–SKODJE test problem. Here, the RPV is chosen as z1(t∗) = z1(0) = z0
1 = 2.0,

γ̃ = 1.2 in Figure 2.18(a), and γ̃ = 3.0 in Figure 2.18(b), respectively. The constant zt02 is set

to zt02 = 0.0 again and t0 varies between −1.0 and −5.0. With the analytic SIM z2 ≡ z1
1+z1

,

the POIapp should converge towards the POI on the SIM
(

2 2
3

)>
. In Figure 2.18, it is clearly

visible that δerr decreases for decreasing t0 meaning that the POI is identified for t0 → −∞.

Here again, the convergence occurs faster for a larger value of γ̃ and numerical results (blue

rhombi) coincide with the analytic error formula resulting from (2.96) (red dashed curve).
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(b) γ̃ = 3.0

Figure 2.18: Error of accuracy δerr of the POIapp z(t∗ = 0.0)—resulting from the BVP (2.86)

applied to the DAVIS–SKODJE model (2.51) with two different values of γ—as a

function of t0. The blue rhombi represent numerical results, whereas the red dashed

curve illustrates the analytic error from (2.96).

As mentioned before, there are several SIM computation approaches making use of the boundary–

value–concept. Besides the SPM 2.1.4 and the ICE-PIC approach 2.1.7, where this concept
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is more indirectly contained by using information of the ‘foretime’ (e.g. computation of fixed

points at infinity), the reverse mode of the TBOA ((2.39) with t∗ = tf ) provides the most im-

portant representative relating to this work. This formulation can be regarded as a special case

of the BVP (2.86), where the objective functional to be minimized implicitly determines the

specification of zt0j , j /∈ Ifixed. Thus, the boundary–value–concept provides the fundamental

idea why the reverse TBOA identifies SIM points exactly in the limit t0 → −∞. Furthermore,

this method obviously combines ideas from both previously presented concepts, the derivative–

of–the–state–vector–concept as well as the boundary–value–concept.

2.6.4 Two Concepts—One Approach

Since two fundamental concepts for SIM computation are exposed in its definite form, it is obvi-

ous to develop a novel advanced species reconstruction formulation that contains both concepts

in an efficient form. The advantages of this include the fact that this formulation would imply

two different, independent (at least within the scope of current knowledge) ways two improve

the accuracy of SIM approximation.

For this purpose it is appropriate to use the reverse TBOA with a modified objective functional,

where, instead of using information of the second derivative of the state vector as formulated

in (2.39), the derivative order is handled as additional parameter ν. This leads to the following

species reconstruction formulation

min

tf∫
t0

‖dνt z(t)‖
2
2 dt, ν ∈ N, ν ≥ 1 (2.98a)

subject to

dtz(t) = S (z(t)) (2.98b)

0 = g (z(tf)) (2.98c)

zj(tf) = ztfj , j ∈ Ifixed (2.98d)

including both concepts—the boundary–value–concept represented by the reverse mode of the

TBOA and the derivative–of–the–state–vector–concept represented by using the νth derivative

of z in the objective functional. Here, two parameters, t0 and ν, are provided to improve the

SIM computation as it holds

lim
t0→−∞

z(tf) ∈ SIM (2.99a)

lim
ν→∞

z(tf) ∈ SIM, (2.99b)
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at least applied to the Linear Model (2.45) as well as the DAVIS–SKODJE model (2.51) where-

fore it is proven analytically [LSU11, Ung10]. Nevertheless, numerical experiments applied to

more realistic kinetic model equations confirm the result.

Certainly, this also works the other way around meaning that a local method making use of

the derivative–of–the–state–vector–concept with derivative order ν as parameter, the ZDP for

instance, is modified to a method using non-local trajectory information via integration of the

boundary–value–concept. The result can be formulated as

dνt zj(t) = 0
∣∣∣
t=t0

, j /∈ Ifixed (2.100a)

subject to

dtz(t) = S (z(t)) (2.100b)

0 = g (z(tf)) (2.100c)

zj(tf) = ztfj , j ∈ Ifixed, (2.100d)

where t0 < tf has to be fulfilled in the reverse mode. As in the previous formulation, Equations

(2.99) hold for the two test models (2.45) and (2.51).

Obviously, there are a multitude of possible formulations imaginable, some of these tested with

the models from 2.3. Out of this, the following optimization problem has turned out as ‘best

working’ (‘best working’ in the sense of indirectly specifying the best choice of zt0j , j /∈ Ifixed

in BVP (2.86)):

min ‖dνt z(t)‖
2
2

∣∣∣
t=t0

(2.101a)

subject to

dtz(t) = S (z(t)) (2.101b)

0 = g (z(tf)) (2.101c)

zj(tf) = ztfj , j ∈ Ifixed, t0 < tf . (2.101d)

The result (applied to the Linear Model (2.45) with (w.l.o.g.) tf = 0) is a POIapp

z(0) =

z0
2

(
1− 2

1+(−1−γ)2νe−2γt0

)
zt02

 (2.102)

identifying the POI on the SIM exactly for ν →∞ as well as t0 → −∞. The error term

|δerr| =
∣∣∣∣ 2z0

2

1 + (−1− γ)2νe−2γt0

∣∣∣∣ (2.103)
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Figure 2.19: Error term (2.103) with z0
2 = 5.0 and γ = 2.0 plotted against ν and t0.

is plotted in Figure 2.19 depending on the two ‘adjusting screws’ ν and t0. Here, z0
2 is arbitrarily

chosen as z0
2 = 5.0 and γ is fixed to γ = 2.0. As it can easily be seen, the error |δerr| decreases

rapidly for both increasing ν as well as decreasing t0, even though a small spectral gap (γ = 2.0)

is chosen. As stated before, it is not possible to decrease t0 arbitrarily based on additional

constraints entering the optimization problem in (2.101c) and restricting the domain where the

kinetic model is defined to a polyhedron in phase space. Thus, for a good SIM approximation in

realistic models the focus is on two issues to be handled:

• choosing ν as large as pratically possible (numerical computation of ν-th order derivatives

required),

• choosing t0 as small as possible (with respect to the physically feasible domain).

The latter issue is discussed in the next section.

2.6.5 Interim Summary

In this section it has been succeeded to expose two basic fundamental concepts—the derivative–

of–the–state–vector–concept and the boundary–value–concept—serving as a basis for a large

number of SIM computation approaches. Each of these concepts result in an exact identification

of a SIM (analytically proven for test models, numerical confirmation for more realistic kinetic

models) in a limiting case (ν →∞ or t0 → −∞). Accordingly, a novel improved species recon-

struction has been developed (2.101) combining both concepts in its fundamental form yielding

a SIM computation method with two adjusting screws to improve the accuracy of SIM identifi-

cation. This is schematically illustrated in Figure 2.20.
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Boundary–Value–ConceptDerivative–of–the–State–Vector–Concept

(2.101)

Figure 2.20: Schematic illustration of common denominators of different SIM computation

approaches merged in a novel improved formulation of a species reconstruction

(2.101).

2.7 Choosing t0 as Small as Possible

As just described, the accuracy of SIM approximation in the reverse mode (representing the

boundary–value–concept) improves with decreasing t0. Unfortunately, additional constraints

entering the species reconstruction and restricting the domain where the kinetic model is de-

fined to a polyhedron in phase space ensure that t0 cannot get arbitrarily small. In chemical

combustion processes, representatives of these constraints are for instance positivity of chemical

species concentrations and chemical element mass conservation relations. Thus, the aim is a

feasible minimal choice of t0, which is discussed in the following.

Figure 2.21 exemplarily visualizes a two-dimensional scenario, where the phase space polyhe-

dron is bounded by the black lines: the z1– and z2–axis (i.e. z2 = 0 and z1 = 0) as well as

two straight lines denoted by B1 and B2 here. The red line refers to the SIM with equilibrium

visualized by the red dot, whereas the blue and magenta curves are trajectories starting from

specified initial values. The vertical dashed black line represents the value ztf2 where the RPV z2

is fixed at time t = tf and the magenta cross is the result of a local species reconstruction (such

as (2.101) with tf = t0). The idea why the reverse mode of a species reconstruction works sig-

nificantly better than the local mode of the same one is based on the evaluation of the objective

function at time t0(< tf). Hence, the corresponding trajectory has a time period of |t0 − tf | to

converge towards the SIM before evaluating at time t = tf and obtaining the missing value(s)

of the POIapp. In Figure 2.21, the maximal feasible time period is represented by the blue curve

between the right cross lying on B2—the result of a reverse mode formulation with minimal

t0—and the cross lying on z2 = ztf2 —the point where the corresponding trajectory is evaluated

at t = tf . It is obvious that the POIapp z(tf) has been significantly improved by using a reverse

mode (POIapp) compared to a local mode formulation with z2(tf) = ztf2 (POIapp).
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Figure 2.21: Schematic visualization of a local method in comparison with a reverse mode for-

mulation with minimal feasible choice of t0.

It remains to be considered how to achieve the minimal value of t0, wherefore (2.101) with (2.45)

as kinetic model is regarded. Additionally, for reasons of simplicity, tf = 0 is chosen which is

no restriction at all. Solving this problem analytically provides formulas for the integration

constants c1, c2 from (2.48) depending on t0, ν, γ, and z0
2

c1 = c∗1
(
t0, ν, γ, z

0
2

)
(2.104a)

c2 = c∗2
(
t0, ν, γ, z

0
2

)
(2.104b)

which are submitted into z1 = z1 (c∗1, c
∗
2) and z2 = z2 (c∗1, c

∗
2) for solving the following opti-

mization problem yielding the minimal feasible t0

min t0 (2.105a)
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subject to

z1(c∗1, c
∗
2) ≥ 0 (2.105b)

z2(c∗1, c
∗
2) ≥ 0 (2.105c)

z1(c∗1, c
∗
2) ≤ n1z2(c∗1, c

∗
2) + b1 (2.105d)

z1(c∗1, c
∗
2) ≤ n2z2(c∗1, c

∗
2) + b2. (2.105e)

Here, (2.105b) and (2.105c) are the positivity constraints of the state variables and (2.105d) and

(2.105e) represent the restrictions B1 and B2 in Figure 2.21 where the constants n1, n2, b1, b2 ∈
R determine the position of these staight lines representing a part of the boundary of the polyhe-

dron that restricts the domain where the kinetic model is defined. Formulas (2.105b)–(2.105e)

are representatives for those additional constraints that enter the species reconstructions above

as function g (e.g. in (2.101)). As an example, Problem (2.105) is solved using fmincon—a

Matlabr toolbox for solving nonlinear optimization problems via an interior point algorithm.

Therefore, the following values are specified:

γ = 1.00 ν = 2.00 z0
2 = 3.00 n1 = −2.00 n2 = −0.25 b1 = 122.00 b2 = 111.00

As a measure for the accuracy of the resulting POIapp, the ratio r between the value of the free

variable of the POIapp and the value of the free variable of the SIM (z1(0) = z0
2) is regarded. The

closer this ratio r is to r = 1, the better is the POIapp. Subsequently, we compare the ratio of the

local method of (2.101) (that is tf = t0 = 0) with the reverse mode (that is t0 < tf = 0) using

minimal t0. Obviously, the degree of improvement depends on the parameter values chosen

above, but it holds that the smaller t0 the larger the improvement. Analysis for the local method

(2.101) yields

POIapp
loc := POIapp =

(
z1(0)

z0
2

)
=

(
2.6471

3.0000

)
(2.106)

which results in a ratio of rloc = 2.6471
3.0000 ≈ 0.8824. On the other hand, Solving (2.105) in the

reverse mode formulation yields a minimal tmin
0 = −2.6056. Using

c∗,min
1 = c∗1

(
tmin
0 , ν, γ, z0

2

)
(2.107a)

c∗,min
2 = c∗2

(
tmin
0 , ν, γ, z0

2

)
(2.107b)

and evaluating

z1(0) = c∗,min
1 + c∗,min

2 (2.108a)

z2(0) = z0
2 (2.108b)
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results in

POIapp

tmin
0

:= POIapp =

(
z1(0)

z0
2

)
=

(
2.9980

3.0000

)
(2.109)

giving a ratio of rtmin
0

= 0.9993 which is a significant improvement compared to rloc by taking

into consideration the small value of γ. The position of the polyhedron determines how small

t0 can become. For instance, changing b1 from b1 = 122 to b1 = 222 yields a minimal t0
of tmin

0 = −3.2047 and a ratio of rtmin
0

= 0.9998. In contrast, choosing b1 = 22 results in

tmin
0 = −0.8957 and rtmin

0
= 0.9794. Apparently, the degree of improvement

∣∣∣rtmin
0
− rloc

∣∣∣ also

depends on the specification of the other variables ν, γ, z0
2 , n1, n2, and b2.

2.8 Reverse TBOA in the Light of Optimal Boundary Control

In the light of BVP formulation, there is a different approach to the reverse TBOA for SIM

computation in its general form (based on an idea of LEBIEDZ) comprising an as yet unspecified

objective functional (for reasons of simplicity additional constraints contained in function g (cf.

(2.39)) are omitted)

min

tf∫
t0

Φ̃(z) dt, t0 < tf ∈ R (2.110a)

subject to

dtz(t) = S (z(t)) (2.110b)

zj(tf) = ztfj , j ∈ Ifixed. (2.110c)

The missing values of the POIapp, zj(tf), j /∈ Ifixed (supposed to be an appropriate POI approx-

imation), are determined by the solution of Optimization Problem (2.110) and can be interpreted

as a boundary control operating at time t = tf . Thus, the following formulation is motivated

min

tf∫
t0

Φ̃(z) dt, t0 < tf ∈ R (2.111a)

subject to

dtz(t) = S (z(t)) (2.111b)

zj(tf) = ztfj , j ∈ Ifixed (2.111c)

zj(t) = u(t), j /∈ Ifixed, (2.111d)

wherefrom the missing values of the POIapp result by evaluating the control function u at t = tf.

This is why the following subsection regarding optimal control theory is inserted.
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2.8.1 Theory of Optimal Control Problems

From an abstract point of view, an optimal control problem can be interpreted as an infinite

optimization problem of the following form

min Φ(z) (2.112a)

subject to

H(z) = ΘY (2.112b)

G(z) ∈ K (2.112c)

z ∈ S (2.112d)

with

Φ : Z → R G : Z → X H : Z → Y (2.113)

being mappings between BANACH spaces (X, ‖ · ‖X), (Y, ‖ · ‖Y ), and (Z, ‖ · ‖Z), whereby ΘX ,

ΘY , and ΘZ represent the zero elements belonging to the respective BANACH space. In analogy

to Section 1.4, S ⊂ Z is a closed and convex subset of Z and K ⊂ X is a cone (with its tip at

ΘZ) defined by

x ∈ K ⇒ αx ∈ K, ∀α > 0 (2.114)

being closed and convex. For infinite optimization problems as (2.112), necessary as well as

sufficient conditions are well-known [Lem71, Kur76, ZK79, MZ79, Mau81]. Application of

these necessary conditions to optimal control problems result in the PONTRYAGIN’S minimum
principle, serving as a basis for indirect methods computing numerical solutions of an optimal

control problem, since they induce a BVP in general.

To formulate a general form of an optimal control problem from (2.112), several specifications

have to be performed:

Variable: The variables (z, u) are elements of the BANACH space

Z := W 1,∞ ([t0, tf ],Rmz)× L∞ ([t0, tf ],Rmu) (2.115)

equipped with the norm

‖(z, u)‖Z := max
{
‖z‖1,∞ , ‖u‖∞

}
, (2.116)

where [t0, tf ] ⊂ R is a non-empty, compact interval with t0 < tf . Here, L∞ ([t0, tf ],Rmu)

consists of all measurable functions u : [t0, tf]→ Rmu which are essentially bounded, i.e.

ess sup
t0≤t≤tf

|u(t)| := inf
N⊂[t0,tf]

N is set of measure zero

sup
t∈[t0,tf]\N

|u(t)| <∞ (2.117)
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and is a BANACH space endowed with the norm ‖u‖∞ := ess sup
t0≤t≤tf

|u(t)|. Accordingly,

W 1,∞ ([t0, tf ],Rmz) consists of all absolutely continuous functions z : [t0, tf] → Rmz

with absolutely continuous derivatives up to order 0 and ‖z‖1,∞ < ∞, where the norm

is given by ‖z‖1,∞ := ess sup
t0≤t≤tf

(|z(t)|+ |Oz(t)|) with Oz(t) being the weak gradient (for

more information see [Ger10]). The space W 1,∞ ([t0, tf ],Rmz) endowed with the norm

‖ · ‖1,∞ is a BANACH space, too.

Objective function: The objective function Φ : Z → R is given by

Φ(z, u) := ϕ (z(t0), z(tf)) +

tf∫
t0

Φ̃ (t, z(t), u(t)) dt (2.118)

with ϕ : Rmz × Rmz → R and Φ̃ : [t0, tf ]× Rmz × Rmu → R sufficiently smooth.

Equality constraints: Equality constraints of an optimal control problem are given by

H(z, u) = ΘY (2.119)

with H = (H1, H2) : Z → Y . Here, the BANACH space Y is defined by

Y := L∞ ([t0, tf ],Rmz)× Rmψ (2.120)

together with

‖(y1, y2)‖Y := max {‖y1‖∞ , ‖y2‖2} (2.121)

and

H1(z, u) = S (t, z(t), u(t))− dtz(t), (2.122a)

H2(z, u) = −ψ (z(t0), z(tf)) (2.122b)

with S : [t0, tf ]× Rmz × Rmu → Rmz and ψ : Rmz × Rmz → Rmψ sufficient smooth.

Inequality constraints: Accordingly, inequality constraints of an optimal control problem are

given by

G(z, u) ∈ K (2.123)

with G = (G1, G2) : Z → X . Here, the BANACH space X is defined by

X := L∞ ([t0, tf ],Rmc)× C ([t0, tf ],Rms) (2.124)

together with

‖(x1, x2)‖X := max {‖x1‖∞ , ‖x2‖∞} (2.125)
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and

G1(z, u) = −c (t, z(t), u(t)) , (2.126a)

G2(z, u) = −s (t, z(t)) (2.126b)

with c : [t0, tf ] × Rmz × Rmu → Rmc and s : [t0, tf ] × Rmz → Rms sufficient smooth.

Additionally, the cone K := K1 ×K2 ⊂ X is defined by

K1 := {y ∈ L∞ ([t0, tf ],Rmc) | y(t) ≥ 0 a.e. in [t0, tf ]} (2.127a)

K2 := {y ∈ C ([t0, tf ],Rms) | y(t) ≥ 0 in [t0, tf ]} . (2.127b)

Set constraint: Finally, the set S ⊂ Z is given by

S := W 1,∞ ([t0, tf ],Rmz)× Uad (2.128)

with

Uad := {u ∈ L∞ ([t0, tf ],Rmu) | u(t) ∈ U a.e. in [t0, tf ]} (2.129)

and U ⊂ Rmu being a closed set.

Based on these specifications, it can be clearly seen, that the problem

min Φ(z, u) (w.r.t. (z, u) ∈ Z) (2.130a)

subject to

H(z, u) = ΘY (2.130b)

G(z, u) ∈ K (2.130c)

(z, u) ∈ S (2.130d)

is equivalent to the following form of an optimal control problem

min ϕ (z(t0), z(tf)) +

tf∫
t0

Φ̃ (t, z(t), u(t)) dt (Objective Function)

(2.131a)

(w.r.t. the state z ∈W 1,∞ ([t0, tf ],Rmz) and the control u ∈ L∞ ([t0, tf ],Rmu))
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subject to

dtz(t) = S (t, z(t), u(t)) a.e. in [t0, tf ] (System of ODEs)

(2.131b)

ψ (z(t0), z(tf)) = 0 (Boundary Conditions)

(2.131c)

c (t, z(t), u(t)) ≤ 0 a.e. in [t0, tf ] (Mixed Control–State Constraints)

(2.131d)

s (t, z(t)) ≤ 0 in [t0, tf ] (Pure State Constraints)

(2.131e)

u(t) ∈ U a.e. in [t0, tf ]. (Set Constraint)

(2.131f)

Depending on the form of the Objective Function (2.131a), the Optimal Control Problem (2.131)

is referred to as

BOLZA Problem (ϕ 6≡ 0 and Φ̃ 6≡ 0)

MAYER Problem (ϕ 6≡ 0 and Φ̃ ≡ 0)

LAGRANGE Problem (ϕ ≡ 0 and Φ̃ 6≡ 0)
being all equivalent in that each of them can be converted to any other one. It is obvious that

LAGRANGE and MAYER problems are special cases of BOLZA problems. A BOLZA problem

can be transformed into a MAYER problem by introducing an extra component for the state

vector x which satisfies the equation

dtx(t) = Φ̃ (t, z(t), u(t)) , x(0) = 0. (2.132)

Using this extra variable the objective function takes the MAYER form

ϕ (z(t0), z(tf)) + x(tf). (2.133)

The transformation of an optimal control problem in LAGRANGE form into MAYER form can

be treated in a similar way. Necessary conditions concerning a local minimizer for Problem

(2.131) without mixed control–state (2.131d) and pure state constraints (2.131e) are summarized

in the following form of the PONTRYAGIN’S minimum principle, wherefore the definition of the

HAMILTONIAN is required:

H(t, z, u, λ, `0) := `0Φ̃(t, z, u) + λ>S(t, z, u). (2.134)

Theorem 2.8.1 (PONTRYAGIN’S Minimum Principle). Let the following assumptions be ful-

filled for Problem (2.131):

(i) The functions ϕ, Φ̃, S, ψ are continuous with respect to all arguments and continuously

differentiable with respect to z and u.
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(ii) U ⊂ Rmu is closed and convex with non-empty interior.

(iii) (z̄, ū) ∈W 1,∞ ([t0, tf ],Rmz)×L∞ ([t0, tf ],Rmu) is a local minimizer of Problem (2.131).

(iv) There are no mixed control–state (2.131d) and pure state constraints (2.131e) in (2.131).

Then there exist non-trivial multipliers `0 ∈ R, σ ∈ Rmψ , and λ ∈ W 1,∞ ([t0, tf ],Rmz) such

that following conditions are fulfilled:

(a) `0 ≥ 0, (`0, σ, λ) 6= Θ,

(b) Adjoint Equation:

dtλ(t) = −∂zH (t, z̄(t), ū(t), λ(t), `0)> a.e. in [t0, tf ], (2.135)

(c) Transversality Conditions:

λ(t0)> = −
(
`0D1ϕ (z̄(t0), z̄(tf)) + σ>D1ψ (z̄(t0), z̄(tf))

)
, (2.136)

λ(tf)
> = `0D2ϕ (z̄(t0), z̄(tf)) + σ>D2ψ (z̄(t0), z̄(tf)) , (2.137)

(Di, i = 1, 2 indicates the partial derivative w.r.t. the ith argument)

(d) Variational Inequality of HAMILTONIAN: Almost everywhere in [t0, tf ] it holds

∂uH (t, z̄(t), ū(t), λ(t), `0) (u− ū(t)) ≥ 0 (2.138)

for all u ∈ U .

Proof. See e.g. [Ger10].

If `0 > 0, it is convenient to fix `0 w.l.o.g. at `0 = 1, since the statements of Theorem 2.8.1 also

hold for λ
`0

. In order to assure `0 > 0 and thus `0 = 1, additional regularity assumptions are

required.

Theorem 2.8.2. Let the conditions of Theorem 2.8.1 be fulfilled. Furthermore, it holds that

rk (D1ψ (z̄(t0), z̄(tf))Σ(t0) + D2ψ (z̄(t0), z̄(tf))Σ(tf)) = mψ (2.139)

with Σ being the fundamental system of the homogeneous, linear system of ODEs

dtΣ(t) = ∂zS (t, z̄(t), ū(t))Σ(t), Σ(t0) = Imz , t ∈ [t0, tf ]. (2.140)

If there additionally exist δz ∈W 1,∞ ([t0, tf ],Rmz) and δu ∈ int (Uad − {ū}) with

∂zS (t, z̄(t), ū(t)) δz(t) + ∂uS (t, z̄(t), ū(t)) δu(t)− dtδz(t) = 0, a.e. in [t0, tf ],

(2.141a)

D1ψ (z̄(t0), z̄(tf)) δz(t0) + D2ψ (z̄(t0), z̄(tf)) δz(trmf ) = 0 (2.141b)

then it holds that `0 = 1 in Theorem 2.8.1.
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Proof. See e.g. [Ger10].

For a specific problem, it is often easier to show that `0 = 0 leads to a contradiction for proving

regularity. If this is successful, w.l.o.g. `0 = 1 can be chosen.

Application of PONTRYAGIN’s minimum principle 2.8.1 to the reverse TBOA (2.111) (i.e. ϕ ≡ 0

(LAGRANGE form), ψ = zj(tf) − ztfj , j ∈ Ifixed) results in the following BVP for primal and

dual variables z(t) and λ(t), respectively:

dtz(t) = S (z(t)) (System of ODEs) (2.142a)

dtλ(t) = −∂zH (z(t), λ(t), `0) (Adjoint Equation) (2.142b)

zj(tf) = ztfj , j ∈ Ifixed (Boundary Condition) (2.142c)

λj(t0) = 0, j ∈ Ifixed (Transversality Condition) (2.142d)

λj(t0) = 0, j /∈ Ifixed (Transversality Condition) (2.142e)

λj(tf) = 0, j /∈ Ifixed (Transversality Condition) (2.142f)

Incidentally, these BVP equations can also be obtained by analyzing the first variation of the

LAGRANGIAN (see [LU14]).

For S(z) = Az withA defined in (2.45) and Φ̃ = ‖dνt z‖
2
2 in (2.111), the HAMILTONIAN defined

in (2.134) reads as follows:

H = `0 ‖Aνz‖22 + λ>Az. (2.143)

As mentioned before, either `0 = 0 or w.l.o.g. `0 = 1, whereby the former case often can

be excluded by using a contradiction argument. If `0 = 0 is assumed in (2.143), the Adjoint

Equation (2.142b) results in

dtλ1 = −∂z1H =
(

1 +
γ

2

)
λ1 −

γ

2
λ2 (2.144a)

dtλ2 = −∂z2H = −γ
2
λ1 +

(
1 +

γ

2

)
λ2 (2.144b)

with analytical solution

λ1(t) = c3et + c4e(1+γ)t (2.145a)

λ2(t) = c3et − c4e(1+γ)t. (2.145b)

Based on the Transversality Conditions (2.142d)–(2.142f) it follows that c3 = c4 = 0 and thus,

λ1 = λ2 = 0 being a contradiction to (`0, λ1, λ2) 6= 0. Consequently, it is approved to set
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`0 = 1 in the HAMILTONIAN (2.143) yielding

H = ‖Aνz‖22 + λ>Az =z2
1

(
2p2
ν + 1− 2pν(−1)ν

)
+ z2

2

(
2p2
ν + 1− 2pν(−1)ν

)
+ z1z2 (4pν (−pν + (−1)ν))

+ z1

(
−λ1 −

γ

2
λ1 +

γ

2
λ2

)
+ z2

(γ
2
λ1 − λ2 −

γ

2
λ2

)
(2.146)

with

Aν =

(
pν −pν + (−1)ν

−pν + (−1)ν pν

)
(2.147)

and pν being a polynomial of the form

pν(γ) := (−1)ν
(

1 +
ν

2
γ + · · ·+ ν

2
γν−1 +

1

2
γν
)
. (2.148)

The Adjoint Equation (2.142b) can now be formulated as

dtλ1 = −∂z1H

= (1 +
γ

2
)λ1 −

γ

2
λ2 − 2z1

(
2p2
ν + 1− 2pν(−1)ν

)
− z2 (4pν (−pν + (−1)ν))

(2.149a)

dtλ2 = −∂z2H

= −γ
2
λ1 + (1 +

γ

2
)λ2 − 2z2

(
2p2
ν + 1− 2pν(−1)ν

)
− z1 (4pν (−pν + (−1)ν))

(2.149b)

with analytical solution

λ1(t) = c3et + c4e(1+γ)t + c1e−t + c2e(−1−γ)t

(
(2pν − (−1)ν)2

1 + γ

)
(2.150a)

λ2(t) = c3et − c4e(1+γ)t + c1e−t − c2e(−1−γ)t

(
(2pν − (−1)ν)2

1 + γ

)
. (2.150b)

Together with (2.15) the HAMILTONIAN can be computed as

H = −2c1c3 − 2c2c4(1 + γ) (2.151)

disclosing a remarkably simple structure. Finally, the BVP (2.142) can be solved analytically
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leading to

c1 =
ztf2 ξ

(
etfe(−1−γ)2t0 − e(−1−2γ)tf

)
ξe(−1−γ)2t0 − e(−1−γ)2tf (ξ + 1) + e−2γtf e−2t0

(2.152a)

c2 =
ztf2

(
e(−1−γ)tf − e(1−γ)tf e−2t0

)
ξe(−1−γ)2t0 − e(−1−γ)2tf (ξ + 1) + e−2γtf e−2t0

(2.152b)

c3 =
ztf2 ξ

(
etf e(−4−γ)t0 + e(−1−γ)tf e−2t0 − e(1+γ)tf e(−2−γ)2t0 − e(−1−2γ)tf e(−2+γ)t0

)(
ξe(−1−γ)2t0 − (ξ + 1)e(−1−γ)2tf + e−2γtfe−2t0

)
(eγtf − eγt0)

(2.152c)

c4 =
ztf2 ξ

(
etfe(−2−γ)2t0 − e−tfe(−1−γ)2t0 + e(−1−γ)tfe(−2−γ)t0 − e(1−γ)tfe(−4−γ)t0

)(
ξe(−1−γ)2t0 − e(−1−γ)2tf(ξ + 1) + e−2γtfe−2t0

)
(eγtf − eγt0)

(2.152d)

with ξ := (2pν−(−1)ν)2

1+γ and Ifixed = {2}. The missing value of the POIapp z1(tf) can now be

computed as

z1(tf) = ztf2


1 +

(
2e(−1−γ)2tf − 2e−2γtfe−2t0

e−2γtfe−2t0 + ξe(−1−γ)2t0 − (ξ + 1) e(−1−γ)2tf

)
︸ ︷︷ ︸

= δerr

z
tf
2


(2.153)

with an error of accuracy δerr being equivalent to that one where the POIapp is computed by

directly solving the Optimization Problem (2.110) analytically with Ifixed = {2} and Φ̃ =

‖dνt z‖
2
2. Consequently, it holds

lim
γ→∞

z1(tf) = ztf2 (2.154a)

lim
ν→∞

z1(tf) = ztf2 (2.154b)

lim
t0→−∞

z1(tf) = ztf2 . (2.154c)

The optimal boundary control viewpoint could be exploited for efficient numerical implementa-

tion of trajectory–based SIM computation since the dual variable λ can be used to compute the

gradient of the objective function with respect to the system state and thus yields derivative in-

formation by a single numerical integration of the adjoint equation (see [CLP+03], Chapter 2.1).
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In particular, the HAMILTONIAN formulation has the potential to establish relations to powerful

concepts from dynamical systems theory that might yield more profound insight into the model

reduction concept in terms of SIM characterization and identification.

2.9 Further Ideas Concerning the Search for an Exact SIM

Identification

In addition to the above-mentioned results concerning SIM computation for model reduction,

several other ideas have been arisen, analyzed, and tested within the scope of this work. Some

of them led nowhere, some others are presently the subject of intense ongoing research. Never-

theless, one important one—in the author’s opinion—is presented here, which is based on idea

of LEBIEDZ and subsequent ideas of the author.

2.9.1 Hamilton’s Principle

Based on empirical work of LEBIEDZ and REINHARDT [Rei08] and their results concerning

the use of an additive term in the objective function of formulation (2.39) and due to the non-

physical fact that lim
t0→∞

|H| = ∞ for the ‘energy–like’ HAMILTONIAN H (2.151) with c1–c4

substituted from (2.152), a possible lack of some additional term in (2.39a) is conjectured in or-

der to achieve an exact identification of SIMs via a finite–time–horizon, finite–derivative–order

variational approach without using limiting arguments. This proposition is motivated by analogy

reasoning with respect to HAMILTON’s principle—the principle of stationary action—in classi-

cal mechanics and its conceptual generalization to dissipative systems where the ‘generalized

forces’ cannot be derived from a potential, see e.g. [San78, San83].

Hamilton’s Principle: A variational principle which states that the path of a conservative sys-

tem in configuration space between two configurations is such that the integral of the

LAGRANGIAN function over time is a minimizer (or maximizer) relative to nearby paths

between the same end points and taking the same time.

The full system information is collected in the functional of the variational problem and encoded

in a single function, the LAGRANGIAN L (z(t), dtz(t), t). In classical mechanics, this LA-

GRANGIAN function is characterized by the difference of kinetic and potential energy T (dz(t), t)−
V (z(t), t), which in our case suggests to consider the following formulation of the objective

function (2.28)

Φ(z) =

tf∫
t0

k1 ‖dtz(t)‖22 − k2‖z(t)‖22 dt (2.155)
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with constants k1, k2 ∈ R determining the ‘quality’ of SIM approximation. The first integrand

term corresponds to some ‘generalized kinetic energy’ (proportional to squared velocity) and the

second to some ‘generalized potential energy’ (proportional to the squared state z(t)).

As mentioned before, exact SIM identification requires c2 = 0 (or rather c̃2 = 0) in (2.48)/(2.53)

for the two test models analyzed in Section 2.3 which can be achieved by k2 = 1 in the linear

and k2 = γ̃
z1(t)+1 in the DAVIS–SKODJE test model for fixed k1 = 1 in (2.155). Moreover,

for the three-dimensional linear model given by (2.66), (2.67), (2.68), (2.69) a two-dimensional

SIM can be computed exactly by using (2.155) with k1 = k2 = 1 as well. Here, the SIM which

is spanned by the two eigenvectors corresponding to the slow eigenvalues of system (2.66) is

represented by z2(t) = h (z1(t), z3(t)) = z1(t)+z3(t)√
2

. Last but not least, the subsequent linear

model

dtz1 = −z1 (2.156a)

dtz2 = 10z1 + (−1− γ̌)z2 (2.156b)

where slow and fast subspace are not perpendicular to each other yields k1 = 1 and k2 = 1 + γ̌

in (2.155) for an exact SIM identification

z2 = h(z1) = 10
z1

γ̌
(2.157)

using a finite time horizon. This can be simply verified by means of the corresponding analytic

solution

z1(t) = č1e−t (2.158a)

z2(t) = 10
č1

γ̌
+ č2e(−1−γ)t. (2.158b)

To find a general characterization of k1 and k2 or a suitable general form of the LAGRANGIAN

(the inverse problem in the calculus of variations, see e.g. [MFV+90, San78]) leading to an

exact SIM identification in a variational approach without using limiting arguments would be

an important issue for model reduction in chemical kinetics. We believe that a HAMILTONIAN

variational formulation might turn out to be a promising approach towards this goal.
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3 Spatially Inhomogeneous Systems:

Inertial Manifold Computation

As mentioned before in the introduction, chemically reacting flows in form of combustion pro-

cesses comprise an interplay between convective and diffusive species transport and chemical

reaction processes. The reduction of the latter, which can be seperately modeled by a system

of ODEs (1.15), is discussed in detail in the previous chapter, where the appearing time scale

separation is exploited by approximation of the long time scale system dynamics via elimination

of the fast relaxing modes by enslaving them to the slow ones. The outcome of this—in the ideal

case a SIM—is supposed to be used as reduced reaction model within the full model equation

to ensure the simulation of a combustion process which is often nearly impossible in reasonable

time using the unreduced (reaction) model. Remembering the diagram from the introduction,

once again illustrated in Figure 3.1, we have not yet gone beyond 1b within this thesis. For

Combustion Model

Reduced Combustion Model Reduced Reaction Model

Reaction Model

2

1c

1a

1b

Figure 3.1: Schematic illustration of two possibilities for model reduction applied to a combus-

tion model.

that reason, this chapter investigates the coupling between reaction and transport processes on

the one hand (1c) and initial thoughts concerning the direct reduction of the combustion model,

i.e. without regarding the reaction model solely (2). Accordingly, Section 3.1 deals with the

modeling of reaction–comvection–diffusion processes yielding a system of PDEs, where the as-

sociated theory is analyzed in the subsequent section. This is followed by general considerations

concerning reaction–convection–diffusion systems treated in Sections 3.3–3.5, before presenting

solution suggestions concerning 1c (Section 3.6) and 2 (Section 3.7). Section 3.8 considers—in

contrast to the previous sections where DIRICHLET boundary conditions are considered—the
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x

xfxs

Figure 3.2: Gas flow through a pipe.

solution behavior of reaction–diffusion processes with NEUMANN boundary conditions.

3.1 Modeling of Reaction–Convection–Diffusion Processes

This section analyzes the mathematical modeling of physical transport processes in form of

diffusive and convective mass transfer, or, formulated differently, where the mathematical equa-

tions in form of systems of PDEs come from. We restrict to the spatial one-dimensional case in

order to simplify the presentation.

3.1.1 Modeling of Convection Processes

In order to deduce a mathematical model for (one-dimensional) convection processes, a gas

flow through a pipe with small (relative to the length of the pipe) and constant cross section

is considered, such that density and velocity of the gas can be assumed to be constant. In this

context, x ∈ R indicates the position along the pipe and % : R × R → R, (t, x) 7→ %(t, x) the

density of the gas at time t ∈ R and position x. The latter is defined in a way, that the total mass

of the gas in any particular pipe section between xs ∈ R and xf ∈ R can be represented by the

integral of the density:

Total mass in [xs, xf ] at time t =

xf∫
xs

%(t, x) dx. (3.1)

A visualization of the described gas flow through a pipe is presented in Figure 3.2. Provided that

the pipe wall is impermeable to gas, the total mass in pipe section [xs, xf ] can only be changed

by inflow and outflow of the mass through the cross sections xs and xf
14. The velocity of the

14In contrast to Section (1.2), the subscripts s and f are abbreviations for ‘start’ and ‘final’ (not to be confused with

‘slow’ and ‘fast’).
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gas at time t in cross section x is described by v : R× R→ R, (t, x) 7→ v(t, x), wherewith the

mass flow of the gas through this cross section is given by

mass flow in (t, x) = %(t, x)v(t, x). (3.2)

Thus, the change of the total mass in [xs, xf ] results in the difference of the mass flows through

xs and xf :

dt

xf∫
xs

%(t, x) dx = %(t, xs)v(t, xs)− %(t, xf)v(t, xf). (3.3)

Integration of (3.3) over [ts, tf], tf > ts, yields the mass conservation equation in integral form:

xf∫
xs

%(tf, x) dx =

xf∫
xs

%(ts, x) dx+

tf∫
ts

%(t, xs)v(t, xs) dt−
tf∫
ts

%(t, xf)v(t, xf) dt. (3.4)

Assumed that both %(t, x) and v(t, x) are continuously differentiable with respect to x and t,

Equation (3.4) can be transformed into

tf∫
ts

xf∫
xs

(∂t%(t, x) + ∂x (%(t, x)v(t, x))) dx dt = 0. (3.5)

This equation holds for any pipe section [xs, xf] and time interval [ts, tf], the consequence being

that the integrand of (3.5) must be equal to zero at any (t, x):

∂t%(t, x) + ∂x (%(t, x)v(t, x)) = 0. (3.6)

This so-called (one-dimensional) continuity equation is the differential form of the mass con-

servation equation. A solution to (3.6) requires the knowledge of v or v = v (%(t, x)). If

v(t, x) = v̄ = constant (in the course of this work w.l.o.g. v̄ > 0 is assumed), the one-

dimensional linear convection equation model is:

∂t%+ v̄∂x% = 0. (3.7)

This equation describes the passive convection of some scalar field %(t, x) carried along by a

flow of constant speed v̄.

3.1.2 Modeling of Diffusion Processes

The same pipe as above is considered, but this time filled with a resting liquid. Inside this liquid

there is a dye diffusing from areas of large concentration to areas of lower one (cf. Figure 3.3).

The diffusion proceeds along x which is why a one-dimensional process is assumed. Then, the
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x

xfxs

Figure 3.3: Diffusion in a pipe.

concentration of the dye at time t ∈ R and position x ∈ R is denoted by z with z : R × R →
R, (t, x) 7→ z(t, x), so that the total mass of the dye in an interval [xs, xf] results in

total mass (of the dye) in [xs, xf] at time t =

xf∫
xs

z(t, x) dx. (3.8)

The transfer of the mass per time unit is defined by the diffusion flux q : R× R→ R, (t, x) 7→
q(t, x) yielding

xf∫
xs

∂tz(t, x) dx = q(t, xs)− q(t, xf). (3.9)

Furthermore, FICK’s first law of diffusion states the existence of a (constant) diffusion coeffi-
cient D such that

q(t, x) = −D∂xz(t, x). (3.10)

Substituting into (3.9) results in

xf∫
xs

∂tz(t, x) dx = D∂xz(t, xf)−D∂xz(t, xs) = D
xf∫
xs

∂2
xxz(t, x) dx (3.11)

which in turn yields

∂tz(t, x) = D∂2
xxz(t, x) (3.12)

since xs and xf are chosen arbitrarily. This equation is referred to as (one-dimensional) heat
equation or FICK’s second law of diffusion, describing the distribution of heat (or variation in

temperature) in a given region over time.
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3.1.3 Reaction / Convection / Diffusion

With this knowledge, it is possible to formulate mathematical models as part of this work so

far which explain how the concentration of one or more substances distributed in space changes

under the influence of three different processes: local chemical reactions in which the species are

transformed into each other, convection which causes the transport of the chemical species by

the bulk movement of the solvent, and diffusion within the solvent which causes the substances

to spread out throughout the entire space.

Reaction Processes: ∂tz(t, x) = S ((z(t, x)) (spatially homogeneous)

Convection Processes: ∂tz(t, x) = −v̄∂xz(t, x) (constant velocity v̄)

Diffusion Processes: ∂tz(t, x) = D∂2
xxz(t, x) (constant diffusion coefficient D)

with z ∈ Rm, v̄ = diag(ˆ̄v, . . . , ˆ̄v) ∈ Rm×m, ˆ̄v ∈ R, and D = diag(D1, . . . ,Dm), Dj > 0, j =

1, . . . ,m. However, these processes do not occur only seperately, but also in combination with

others, i.e. a chemical species undergoes not only either a reaction, a convection, or a diffusion

process, but also can experience two or even three simultaneously. Particularly, the following

combinations are of special interest with regard to this work:

Reac.–Conv.: ∂tz(t, x) = − v̄∂xz(t, x) + S (z(t, x))

Reac.–Diff.: ∂tz(t, x) = +D∂2
xxz(t, x) + S(z(t, x))

Reac.–Conv.–Diff.: ∂tz(t, x) = −v̄∂xz(t, x)︸ ︷︷ ︸
Convection

+D∂2
xxz(t, x)︸ ︷︷ ︸

Diffusion

+S (z(t, x))︸ ︷︷ ︸
Reaction

These equations are differential equations, but this time the unknown function z does not depend

on a single independent variable and its derivatives being the consequence that no system of

ODEs is involved, but a system of PDEs, which is why the following section deals with the

theory of systems of PDEs.

3.2 Theory of Systems of Partial Differential Equations

Systems of Partial Differential Equations (PDEs) are often used to construct models of the

most basic theories underlying a wide variety of phenomena from physics and engineering such

as sound, heat, electrostatics, electrodynamics, fluid flow, elasticity, or quantum mechanics, to

name just a few. For example, the system of PDEs known as MAXWELL’s equations can be

written on the back of a post card, yet from these equations one can derive the entire theory of

electricity and magnetism, including light. Our goal here is to state the most basic definitions

from the theory of systems of PDEs which is necessary to understand the subsequent sections of

this work.
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As stated previously in Section 1.1, a PDE is a differential equation that contains unknown

multivariable functions and their partial derivatives (in contrast to ODEs where the unknown

function depends on a single independent variable and its derivatives). Thus, an ODE can be

considered as a special case of a PDE but, as will be seen, the behavior of solutions is quite

different in general. Accordingly, a system of PDEs of order n (n ≥ 1) for the unknown function

z : I → Rm, x := (t, x1, . . . , xd)
> 7→ z(x) with I being an open subset of Rd+1 and d ≥ 1 is

an equation of the form

F
(
Dnz(x),Dn−1z(x), . . . ,D2z(x),D1z(x), z(x), x

)
= 0 (3.13)

with given F : Ω ⊂
(
Rm(d+1)n × Rm(d+1)n−1 × · · · × Rm(d+1) × Rm × I

)
→ Rm.

Notation 3.2.1. Let α ∈ (N0)d+1 and |α| being the sum of its elements |α| :=
∑d+1

j=1 αj . The

expression Dαz(x) refers to the partial derivative

Dαz(x) :=
∂|α|

∂tα1∂xα2
1 · · · ∂x

αd+1

d

z(x) (3.14)

for |α| > 0 (and Dαz(x) := z(x) for |α| = 0). Here, the vector α is referred to as multi-index.

Using this notation,

Dnz(x) = {Dαz(x) | |α| = n}, n ∈ N. (3.15)

Equation (3.13) is labeled linear if it has the following form∑
|α|≤n

aα(x)Dαz(x) = r (x) (3.16)

with aα(x) and r(x) being continuous functions in x, otherwise nonlinear (with the exception

of quasilinear and semilinear equations being irrelevant within the scope of this work). If

additionally it holds that r = 0, the linear system of PDEs of order n (3.16) is referred to as

homogeneous. Furthermore, a function u : I → Rm is called solution of (3.13) if

• u ∈ Cn(I) and

• F
(
Dnu(x),Dn−1u(x), . . . ,D2u(x),D1u(x), u(x), x

)
= 0.

Although the issue of existence and uniqueness of solutions of systems of ODEs has a very sat-

isfactory answer with the PICARD–LINDELÖF theorem (1.1.11), that is not the case for systems

of PDEs. Equations (3.7) and (3.12) serve as example of a linear homogeneous system of PDEs

of order n = 1 and n = 2, respectively. In the following course of this dissertation we restrict

to d = 1 and thus, x = (t, x)>.
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3.2.1 Systems of Partial Differential Equations of Order One

For systems of PDEs of order one, the function F reduces to

F
(
x, z(x),D1z(x)

)
= 0 (3.17)

with x = (t, x)>. A corresponding linear system has the form

F = ∂tz(t, x) + a1(t, x)∂xz(t, x) + a2(t, x)z(t, x)− r(t, x) = 0 (3.18)

with a1, a2 ∈ Rd+1 × Rm×m. If the eigenvalues λ1, . . . , λm of a1 = a1(t, x) are real and

there exists a decomposition of the form a1 = C−1DC with D = diag(λ1, . . . , λm), then a1 is

referred to as real–diagonalizable. Herewith, Equation (3.18) is referred to as

elliptic if there is no real eigenvalue of a1(t0, x0)

hyperbolic if a1(t0, x0) is real–diagonalizable

where (t0, x0) ∈ I is fixed. Therefore, if a1 is symmetric or has m different real eigenvalues,

the system is hyperbolic, since these conditions are sufficient for real–diagonalizable.

Example 3.2.2. The subsequent system of PDEs of order n = 1 with z = (z1, z2)> ∈ R2

∂tz1 − ∂xz2 = 0 (3.19a)

∂tz2 − ∂xz1 = 0 (3.19b)

has the form (3.18) with

a1 =

(
0 −1

−1 0

)
. (3.20)

It is hyperbolic, since

a1 =

(
1 1

−1 1

)−1

︸ ︷︷ ︸
C−1

(
−1 0

0 1

)
︸ ︷︷ ︸

D

(
1 1

−1 1

)
︸ ︷︷ ︸

C

. (3.21)

In contrast, the system

∂tz1 − ∂xz2 = 0 (3.22a)

∂tz2 + ∂xz1 = 0 (3.22b)

is elliptic, since it has the form (3.18) with

a1 =

(
0 −1

1 0

)
(3.23)

and corresponding eigenvalues λ1,2 = ±i.
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3.2.2 Systems of Partial Differential Equations of Order Two

For systems of PDEs of order two, the function F given by (3.13) reduces to

F
(
x, z(x),D1z(x),D2z(x)

)
= 0 (3.24)

with x = (t, x)>. Furthermore, this work considers functions F of the following form

F = a11(t, x)∂2
ttz + 2a12(t, x)∂2

txz + a22(t, x)∂2
xxz + (lower order terms) = 0 (3.25)

with given functions a11, a12, a22 ∈ Rd+1 × Rm×m. The problem now is to find a function

z ∈ C2(I) that solves Equation (3.25) in I . Equation (3.25) provides a further classification.

Therefore, let m = 1, (t0, x0) ∈ I be fixed, and λ1, λ2 the (real) eigenvalues of the symmetric

matrix

A =

(
a11(t0, x0) a12(t0, x0)

a12(t0, x0) a22(t0, x0)

)
. (3.26)

Then, (3.25) in (t0, x0) is referred to as

elliptic if either λ1, λ2 > 0 or λ1, λ2 < 0

hyperbolic if either λ1 > 0 and λ2 < 0 or λ1 < 0 and λ2 > 0

parabolic if λ1 = 0 or λ2 = 0.

Note that this classification depends on (t0, x0), meaning that a system of PDEs (3.25) can

change its type within I . Accordingly, a system of PDEs with m > 1 is called elliptic/hy-

perbolic/parabolic, if each component of the system is elliptic/hyperbolic/parabolic. Generally,

parabolic systems of PDEs contain a ‘time variable’, where the state evolution with respect to

time is described by a derivation of order one, which is why they are also labeled evolution
problems.

Example 3.2.3 (POISSON’s Equation). POISSON’s equation is used, for instance, to describe the

potential energy field caused by a given charge or mass density distribution and reads

−∂2
ttz(x)− ∂2

xxz(x) = r(x) (3.27)

with z ∈ Rd+1 × R. Usually, r is given and z is sought. Since A =

(
−1 0

0 −1

)
and thus,

λ1, λ2 = −1 < 0, POISSON’s equation is elliptic.

Example 3.2.4 (Linear Wave Equation). The linear wave equation for z ∈ Rd+1 × R

∂2
ttz(x)− ∂2

xxz(x) = r(x) (3.28)
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is hyperbolic, since A =

(
1 0

0 −1

)
and thus, λ1 = 1 > 0 and λ2 = −1 < 0. As the name

suggests, it is a model for the description of waves—as they occur in physics—such as sound

waves, light waves, and water waves.

Example 3.2.5 (Linear Heat Equation). A prominent example of a parabolic system of PDEs is

the linear heat equation for again z ∈ Rd+1 × R:

∂tz(x)− ∂2
xxz(x) = r(x). (3.29)

Here, A =

(
0 0

0 −1

)
and thus, λ1 = 0 and λ2 = −1 < 0. It describes, for instance, the

distribution of heat (or variation in temperature) in a given region over time.

Since a solution of a system of PDEs in not unique in general, additional initial and/or boundary

conditions are required in order to ensure uniqueness of a solution. In this context—in contrast

to systems of ODEs—different kinds of systems of PDEs call for different kinds of initial and/or

boundary conditions in order to guarantee a well-posed problem. For instance, the parabolic

case requires initial as well as boundary conditions (this is termed as initial–boundary value
problem (IBVP)), whereas initial conditions can be sufficient in the hyperbolic case. In the

framework of this work, boundary conditions are distinguished between

DIRICHLET Boundary Conditions: The boundary gives a value to the state variable

of the problem.

NEUMANN Boundary Conditions: The boundary gives a value to the normal

derivative of the state variable of the problem.

Example 3.2.6. For given 0 < T < ∞ and given initial data z0 find z = z(t, x) with z ∈
C0 ([0, T ]× [0, 1]) and ∂tz, ∂2

xxz ∈ C0 ((0, T ]× (0, 1)), such that

∂tz(t, x) = D∂2
xxz(t, x) + S (z(t, x)) in (0, T )× (0, 1) (3.30a)

z(0, x) = z0(x) in (0, 1) (3.30b)

z(t, 0) = 0 in (0, T ) (3.30c)

z(t, 1) = 0 in (0, T ). (3.30d)

This is a well-posed IBVP for the parabolic reaction–diffusion equation (see 3.1.3) with DIRICH-

LET boundary conditions.

Especially for this parabolic reaction–diffusion equation, there is a statement about solution

of uniqueness for IBVPs (further results concerning existence and uniqueness of solutions for

reaction–diffusion equations are listed in [Kut11]):
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Theorem 3.2.7. Let z1 = z1(t, x) and z2 = z2(t, x) be solutions of the reaction–diffusion

equation

∂tz(t, x) = D∂2
xxz(t, x) + S (z(t, x)) (3.31)

with z1, z2 ∈ C0 ([0, T ]× [0, 1]), ∂tz1, ∂tz
2, ∂2

xxz
1, ∂2

xxz
2 ∈ C0 ((0, T ]× (0, 1)), and z1 = z2

on {0} × (0, 1) as well as on (0, T )× {0, 1}. Then it follows that

z1 = z2 in (0, 1)× (0, T ). (3.32)

Proof. See e.g. [Kut11].

Example 3.2.8. For given initial data z0 ∈ C0(R) with sup
R
|z0| < ∞ find z = z(t, x) with

z ∈ C0 ([0,∞)× R) and ∂tz, ∂xz ∈ C0 ((0,∞)× R), such that

∂tz(t, x) = −v̄∂xz(t, x) + S (z(t, x)) in (0,∞)× R (3.33a)

z(0, x) = z0(x) in R. (3.33b)

This is an IVP for the reaction–convection equation (see 3.1.3).

3.3 First Approximation

As seen in the previous chapter of this work, a transient (spatially) homogeneous15 combustion

process—i.e. in the absence of transport processes such as convection and diffusion—can be de-

scribed by a system of ODEs which can be reduced by computation of a specific manifold—the

SIM. It is important to note that these SIMs are identified based solely on chemical reaction, i.e.

on homogeneous reactive systems without accounting for the above mentioned transport pro-

cesses. However, realistic reactive flows are inhomogeneous in general and involve convection

and molecular diffusion. The interesting point here is to figure out a useful reduced description

of inhomogeneous combustion processes via the use of SIMs which is greatly complicated by the

transport processes present and the coupling between chemistry and those transport processes.

In the spatially homogeneous case, the kinetic model equations read

∂tz(t, x) = S (z(t, x)) (3.34a)

z(t0, x) = zt0(x) (3.34b)

15In the further course of this work ‘(in-)homogeneous’ means ‘spatially (in-)homogeneous’.
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(in the remainder of this work t0 is set w.l.o.g. to t0 = 0), whereas the corresponding reduced

(reaction) model is formulated as

∂tzj(t, x) = Sj (z(t, x)) , j ∈ Ifixed (3.35a)

zj(0, x) = z0
j (x), j ∈ Ifixed (3.35b)

zk(t, x) = h (zj(t, x)) , j ∈ Ifixed, k /∈ Ifixed (3.35c)

with h being the species reconstruction function representing the SIM. The reduced descrip-

tion of a kinetic model equation (such as (3.35)) is referred to as suitable (with respect to the

corresponding full model (such as (3.34))) if they coincide (i.e. having the same corresponding

solutions) for z0(x) =
(
z0
j (x), h

(
z0
j (x)

))>
, j ∈ Ifixed, i.e. for initial values located on the

SIM. As already known from the previous chapter of this work, the reduced description (3.35)

is suitable with respect to (3.34) in the pure reaction case, which is demonstrated by means of

an example in the following.

For the DAVIS–SKODJE model (see 2.3)

∂tz1(t, x) = −z1(t, x) (3.36a)

∂tz2(t, x) = −γ̃z2(t, x) +
(γ̃ − 1)z1(t, x) + γ̃z1(t, x)2

(1 + z1(t, x))2 (3.36b)

z1(0, x) = z0
1(x) (3.36c)

z2(0, x) = z0
2(x) (3.36d)

the corresponding suitable reduced model is given by

∂tz1(t, x) = −z1(t, x) (3.37a)

z1(0, x) = z0
1(x) (3.37b)

z2(t, x) = h (z1(t, x)) =
z1(t, x)

z1(t, x) + 1
(3.37c)

where Ifixed = {1} is chosen, since both (3.36) as well as (3.37) yield

z1(t, x) = z0
1(x)e−t (3.38a)

z2(t, x) =
z0

1(x)

z0
1(x) + et

(3.38b)

for z0
2(x) = h

(
z0

1(x)
)

=
z0
1(x)

z0
1(x)+1

as analytic solution. This is visualized in Figure 3.4 for

z0
1(x) = 1.0, where z2 is plotted against z1 and x. As can be seen, for each x the SIM z2 = z1

z1+1

is apparent.

93



3. Spatially Inhomogeneous Systems: Inertial Manifold Computation

00.10.20.30.40.50.60.70.80.91

0

0.1

0.2

0.3

0.4

0.5

0.6

x

z1

z2

Figure 3.4: Coinciding solutions of both (3.36) and (3.37) for z0
1(x) = 1.0.

The most straightforward approach in search of a suitable reduced description for inhomoge-

neous reactive flows involving convective and/or diffusive terms is the first approximation
(FA): as in the homogeneous case, the occuring non RPVs are replaced by the species recon-

struction function h resulting from the SIM computation based solely on reactive terms. As a

consequence, if the FA of an inhomogeneous model including diffusive and/or convective terms

is suitable, there is no influence of the transport processes on the chemistry–based SIM. The

following Table 3.1 depicts the different full model equations together with its appropriate FAs.

Table 3.1: List of different full model equations together with its appropriate FAs.

Reaction Reaction–Convection

Full ∂tz = S (z) ∂tz = −v̄∂xz + S (z)

FA ∂tzj = Sj (z) ∂tzj = −ˆ̄v∂xzj + Sj (z)

Suitable 3 ?

Reaction–Diffusion Reaction–Convection–Diffusion

Full ∂tz = D∂2
xxz + S (z) ∂tz = −v̄∂xz +D∂2

xxz + S (z)

FA ∂tzj = Dj∂2
xxzj + Sj (z) ∂tzj = −ˆ̄v∂xzj +Dj∂2

xxzj + Sj (z)

Suitable ? ?

for j ∈ Ifixed and zk = h(zj), k /∈ Ifixed, j ∈ Ifixed in the FAs.

The subsequent sections are concerned with the question if the FAs stated in Table 3.1 are suit-

able with respect to the appropriate full model equations or not. For this purpose, the reaction–

convection case is firstly regarded where it becomes apparent that there is no influence of the
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convective term concerning the reduced reaction model, meaning that the FA of the reaction–

convection equation is suitable. As a consequence, it shall be sufficient to focus on the reaction–

diffusion case such that the reaction–convection–diffusion case can be neglected.

3.4 Coupling: Reduced Reaction and Convection

Initially, the influence of convective terms concerning the reduced reaction model is analyzed.

Accordingly, diffusion effects are assumed to be nonexistent, such that the full kinetic model

equation reads

∂tz(t, x) = −v̄∂xz(t, x)︸ ︷︷ ︸
Convection

+S (z(t, x))︸ ︷︷ ︸
Reaction

(3.39)

with corresponding IVP given by Example 3.2.8. Here, v̄ is allowed to be smoothly dependent

on time t and space x, such that v̄ = v̄(t, x) = diag
(
ˆ̄v(t, x), . . . , ˆ̄v(t, x)

)
∈ Rm×m. The

procedure to analyze the convective influence is as follows: if the solution of the full model

(3.33) with initial values on the SIM equates with the solution of the respective FA (see Table

3.1), then there is no perturbation caused by convection—meaning that the FA is suitable. More

precisely, we assume a partition of the state vector z ∈ Rm into RPVs and non RPVs (after a

possible reordering/renaming of the components)

z(t, x) =

(
zrpv(t, x)

znrpv(t, x)

)
(3.40)

with zrpv := (zj)j∈Ifixed
∈ Rmrpv and znrpv := (zj)j /∈Ifixed

∈ Rmnrpv . In 2.5, a discussion about

how to choose Ifixed can be found. Thus, (3.39) can be formulated as

∂tzrpv(t, x) = −v̄rpv(t, x)∂xzrpv(t, x) + Srpv (zrpv(t, x), znrpv(t, x)) (3.41a)

∂tznrpv(t, x) = −v̄nrpv(t, x)∂xzrpv(t, x) + Snrpv (zrpv(t, x), znrpv(t, x)) (3.41b)

with

v̄rpv(t, x) := diag
(
ˆ̄v(t, x), . . . , ˆ̄v(t, x)

)
∈ Rmrpv×mrpv , (3.42a)

v̄nrpv(t, x) := diag
(
ˆ̄v(t, x), . . . , ˆ̄v(t, x)

)
∈ Rmnrpv×mnrpv , (3.42b)

S = (Srpv, Snrpv)>, and corresponding initial values

zrpv(0, x) = z0
rpv(x) (3.43a)

znrpv(0, x) = z0
nrpv(x). (3.43b)
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If z0
nrpv(x) = h

(
z0

rpv(x)
)

with h being the species reconstruction function representing the SIM

in the pure reaction case, the initial values are chosen on the SIM. Accordingly, the correspond-

ing FA can be formulated as

∂tzrpv(t, x) = −v̄rpv∂xzrpv(t, x) + Srpv (zrpv(t, x), h (zrpv(t, x))) (3.44a)

znrpv(t, x) = h (zrpv(t, x)) (3.44b)

together with

zrpv(0, x) = z0
rpv(x). (3.45)

In case of equality of the solution regarding (3.41), (3.43) together with z0
nrpv(x) = h

(
z0

rpv(x)
)

as well as (3.44), (3.45), there is no influence of the convection terms concerning the reduced

reaction model and thus, the FA (3.44), (3.45) is a suitable reduced reaction–convection model.

This issue is treated in the following.

By assuming zrpv =
(
z1, . . . , zmrpv

)>, znrpv =
(
zmrpv+1, . . . , zm

)>, Srpv =
(
S1, . . . , Smrpv

)>,

and Snrpv =
(
Smrpv+1, . . . , Sm

)>, the full System (3.41), (3.43) can be formulated as

∂tzj(t, x) = −ˆ̄v(t, x)∂xzj(t, x) + Sj (z1(t, x), . . . , zm(t, x)) (3.46a)

zj(0, x) = z0
j (x) (3.46b)

for j = 1, . . . ,m. In order to solve this IVP, the following ansatz is provided

dtxj(t) = ˆ̄v (t, xj(t)) (3.47a)

xj(0) = x0
j (3.47b)

wherefrom the follwing system of ODEs results

dtzj (t, xj(t)) = ∂tzj (t, xj(t)) + dtxj(t)︸ ︷︷ ︸
=ˆ̄v(t,xj(t))

∂xzj (t, xj(t))

= Sj (z1 (t, x1(t)) , . . . , zm (t, xm(t)))

(3.48a)

zj(0, xj(0)) = zj(0, x
0
j ) = z0

j (x0
j ) (3.48b)

with j = 1, . . . ,m. Consequently, it is possible to solve (3.46) by solving (3.47), which is

denoted by method of characteristics. On the other hand, the Reduced System (3.44), (3.45)

can be written as

∂tzj(t, x) = −ˆ̄v(t, x)∂xzj(t, x) + Sj
(
z1(t, x), . . . , zmrpv(t, x), h

(
z1(t, x), . . . , zmrpv(t, x)

))
(3.49a)

zj(0, x) = z0
j (x) (3.49b)

znrpv(t, x) = h
(
z1, . . . , zmrpv

)
(3.49c)
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for j = 1, . . . ,mrpv. Accordingly, this IVP can again be solved by using (3.47) for j =

1, . . . ,mrpv yielding

dtzj (t, xj(t)) = ∂tzj (t, xj(t)) + dtxj(t)︸ ︷︷ ︸
=ˆ̄v(t,xj(t))

∂xzj (t, xj(t))

= Sj
(
z1 (t, x1(t)) , . . . , zmrpv

(
t, xmrpv(t)

)
, h (z1 (t, x1(t)) , . . .

. . . , zmrpv

(
t, xmrpv(t)

)))
(3.50a)

zj(0, xj(0)) = zj(0, x
0
j ) = z0

j (x0
j ) (3.50b)

with j = 1, . . . ,mrpv. Therefore, analytic solutions of the full reaction–convection equa-

tion with initial values on the SIM equate with the analytic solutions of the reduced reaction–

convection equation which is why there is no influence of convection (in form of (3.39)) con-

cerning the reduced reaction model.

The linear model S (z(t, x)) = Az(t, x) with A given by (2.45) and v̄(t, x) =

(
ˆ̄v 0

0 ˆ̄v

)
with

ˆ̄v ∈ R will serve as a demonstration. The full model reads

∂tz1(t, x) = −ˆ̄v∂xz1(t, x) + (−1− γ

2
)z1(t, x) +

γ

2
z2(t, x) (3.51a)

∂tz2(t, x) = −ˆ̄v∂xz2(t, x) +
γ

2
z1(t, x) + (−1− γ

2
)z2(t, x) (3.51b)

z1(0, x) = z0
1(x) (3.51c)

z2(0, x) = z0
2(x) (3.51d)

with z0
1(x) = h

(
z0

2(x)
)

= z0
2(x) for initial values on the SIM. From (3.48) it follows that

dtz1 (t, x1(t)) = (−1− γ

2
)z1 (t, x1(t)) +

γ

2
z2 (t, x2(t)) (3.52a)

dtz2 (t, x2(t)) =
γ

2
z1 (t, x1(t)) + (−1− γ

2
)z2 (t, x2(t)) (3.52b)

z1 (0, x1(0)) = z0
1(x0

1) (3.52c)

z2 (0, x2(0)) = z0
2(x0

2) (3.52d)

where x1(t), x2(t), x0
1, and x0

2 are defined by

dtx1(t) = ˆ̄v (3.53a)

dtx2(t) = ˆ̄v (3.53b)

x1(0) = x0
1 (3.53c)

x2(0) = x0
2. (3.53d)
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The latter results in

x1(t) = x0
1 + ˆ̄vt (3.54a)

x2(t) = x0
2 + ˆ̄vt (3.54b)

wherewith (3.52c) and (3.52d) can be rewritten into z1(0, x1(0)) = z0
1(x1(t) − ˆ̄vt) and

z2(0, x2(0)) = z0
2(x2(t)− ˆ̄vt), respectively. Consequently, the analytic solution of (3.52) results

in

z1(t, x1(t)) =
z0

1(x1(t)− ˆ̄vt) + z0
2(x2(t)− ˆ̄vt)

2
e−t

+
z0

1(x1(t)− ˆ̄vt)− z0
2(x2(t)− ˆ̄vt)

2
e(−1−γ)t

(3.55a)

z2(t, x2(t)) =
z0

1(x1(t)− ˆ̄vt) + z0
2(x2(t)− ˆ̄vt)

2
e−t

−z
0
1(x1(t)− ˆ̄vt)− z0

2(x2(t)− ˆ̄vt)

2
e(−1−γ)t

(3.55b)

and thus, the solution of the full reaction–convection model (3.51) with z0
1(x) = h

(
z0

2(x)
)

=

z0
2(x) is given by

z1(t, x) = z0
2(x− ˆ̄vt)e−t (3.56a)

z2(t, x) = z0
2(x− ˆ̄vt)e−t. (3.56b)

The same procedure applied to the corresponding FA

∂2(t, x) = −ˆ̄v∂xz2(t, x) +
γ

2
h(z2(t, x))︸ ︷︷ ︸

=z2(t,x)

+(−1− γ

2
)z2(t, x) = −ˆ̄v∂xz2(t, x)− z2(t, x)

(3.57a)

z2(0, x) = z0
2(x) (3.57b)

z1(t, x) = h(z2(t, x)) = z2(t, x) (3.57c)

again results in (3.56) which confirms the statement described in the previous section, namely

that the reduced reaction model experiences no influence caused by convective terms.

Obviously, the same conclusion is achieved by using v̄(t, x) =

(
ˆ̄v(t, x) 0

0 ˆ̄v(t, x)

)
with ex-

amplarily choosing ˆ̄v(t, x) = x. Here, the solution of the system of ODEs (3.47) results in

x1(t) = x0
1et (3.58a)

x2(t) = x0
2et (3.58b)

98



3.5. Coupling: Reduced Reaction and Diffusion

yielding

z1(t, x) =
z0

1(xe−t) + z0
2(xe−t)

2
e−t +

z0
1(xe−t)− z0

2(xe−t)
2

e(−1−γ)t (3.59a)

z2(t, x) =
z0

1(xe−t) + z0
2(xe−t)

2
e−t − z0

1(xe−t)− z0
2(xe−t)

2
e(−1−γ)t (3.59b)

which coincides with the solution of the corresponding FA for z0
1 = z0

2 .

To conclude, it can be stated that the FA of the reaction–convection model equation is suitable

and can be used, therefore, as reduced reaction–convection model. Whether this is also the case

for the reaction–diffusion case is still unclear and will be analyzed in the subsequent section.

3.5 Coupling: Reduced Reaction and Diffusion

As has just been pointed out, the FA of the reaction–convection model is suitable and thus,

using a SIM of the reaction kinetics as reduced model is the appropriate choice in that case.

This is why it is sufficient to analyze the reaction–diffusion equation instead of the reaction–

convection–diffusion one. Accordingly, the kinetic model equations read

∂tzrpv(t, x) = Drpv∂
2
xxzrpv(t, x) + Srpv (zrpv(t, x), znrpv(t, x)) (3.60a)

∂tznrpv(t, x) = Dnrpv∂
2
xxzrpv(t, x) + Snrpv (zrpv(t, x), znrpv(t, x)) (3.60b)

with Drpv = diag
(
D1, . . . ,Dmrpv

)
and Dnrpv = diag

(
Dmrpv+1, . . . ,Dm

)
. This reaction–

diffusion equation is an evolution problem, i.e. a parabolic system of PDEs of order two. As seen

before, this kind of problem requires both initial and boundary conditions to be well-posed, such

that the resulting (one-dimensional) IBVP is given by (3.60) in (0, T ) × (xs, xf), 0 < T < ∞,

together with a given initial condition

zrpv(0, x) = z0
rpv(x) (3.61a)

znrpv(0, x) = z0
nrpv(x) (3.61b)

in (xs, xf) and boundary conditions

Aα,rpvzrpv(t, xs) +A1−α,rpv∂xzrpv(t, xs) = zrpv,xs(t) (3.62a)

Aα,nrpvznrpv(t, xs) +A1−α,nrpv∂xznrpv(t, xs) = znrpv,xs(t) (3.62b)

Aα,rpvzrpv(t, xf) +A1−α,rpv∂xzrpv(t, xf) = zrpv,xf(t) (3.62c)

Aα,nrpvznrpv(t, xf) +A1−α,nrpv∂xznrpv(t, xf) = znrpv,xf(t) (3.62d)

in (0, T ). Here,Aα,rpv = diag(α, . . . , α) ∈ Rmrpv×mrpv ,A1−α,rpv = diag(1−α, . . . , 1−α) ∈
Rmrpv×mrpv , and Aα,nrpv, A1−α,nrpv defined accordingly. In order to select between either
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DIRICHLET or NEUMANN boundary conditions, α ∈ {0, 1}: the choice of α = 0 results in

NEUMANN boundary conditions, whereas α = 1 results in DIRICHLET ones. Since there is no

gerneral procedure for obtaining an analytic solution to this IBVP, a Matlabr function called

pdepe is used to solve this parabolic system of PDEs numerically. This pdepe solver converts

the provided system of PDEs into a system of ODEs using a second-order accurate spatial dis-

cretisation [SB90], which is solved by time integration using ode15s—an IVP solver suitable

for stiff systems of ODEs. In the following, numerical solutions of a reaction–diffusion equation

together with several chosen values for initial and boundary conditions (solved via using pdepe)

are plotted in order to analyze the behavior of the respective solutions.

The DAVIS–SKODJE model (see 2.3.2) extended by a diffusion term, i.e. S1 = −z1(t, x) and

S2 = −γ̃z2(t, x) + (γ̃−1)z1(t,x)+γ̃z1(t,x)2

(1+z1(t,x))2 with Ifixed = {1} and xs = 0.0, xf = 1.0 serves as

an example. Furthermore, z0
1(x) is fixed to z0

1(x) = 1.0 and α = 1 to determine DIRICHLET

boundary conditions. A natural way to choose zj,k(t), j ∈ {1, 2}, k ∈ {0, 1} is to choose them

as solution of the corresponding homogeneous reaction equation, i.e.

z1,0(t) = z1,1(t) = z0
1e−t = e−t (3.63a)

z2,0(t) = z2,1(t) =

(
z0

2 −
z0

1

z0
1 + 1

)
e−γ̃t +

z0
1

z0
1 + et

=
1

1 + et
(3.63b)

for z0
2(x) ≡ 0.5 or z0

2(x) ≡ −0.1 sin(2πx) + 0.5 which is chosen in Figure 3.5, where the

numerical solution (computed with pdepe) of the above mentioned scenario is depicted for dif-

ferent values of γ̃, D1, and D2. As in the homogeneous case, the solution is visualized in phase

space, but this time enlarged by the x-axis. Here, the red curve visualizes the initial condition

(3.61), whereas the green curves represent the boundary values (3.63). Accordingly, the blue

curves evolving along a specific value of x̂ are solutions z(t, x̂) for t > 0, whereas the blue

curves orthogonal to them represent the solutions z(t̂, x) for all x ∈ [0, 1] at a specific point in

time t̂ converging towards chemical equilibrium z1 = z2 = 0.0 for t̂ → ∞. In Figure 3.5(a),

the initial condition is chosen on the SIM, whereby the behavior of the solution is independent

of γ̃, D1, and D2. Based on this special choice of initial as well as boundary conditions, there

is no difference between Figure 3.5(a) and Figure 3.4. In order to analyze the influence of γ̃ as

well as D1 and D2, the initial condition is changed to z0
2(x) = −0.1 sin(2πx) + 0.5 in Figures

3.5(b), (c), and (d). As can be seen in Figure 3.5(c) in comparison with Figure 3.5(b), a larger

value of γ̃ results in a faster equalization of z1 and z2 along x, which is not surprising when

remembering the pure reaction case, where the spectral gap parameter γ̃ controls the degree of

attraction of the SIM. Larger values of D1 and D2 seem to have the same effect (Figure 3.5(d)),

but this influence is analyzed in more detail in the following. In this above described trivial

scenario the corresponding FA is obviously suitable (on the basis of the analogy to the spatially

homogeneous case).
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(b) γ̃ = 5.0, D1 = D2 = 1.0 · 10−3, z0
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−0.1 sin(2πx) + 0.5
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(c) γ̃ = 25.0, D1 = D2 = 1.0 · 10−3, z0
2(x) =

−0.1 sin(2πx) + 0.5
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(d) γ̃ = 5.0, D1 = D2 = 1.0 · 102, z0
2(x) =

−0.1 sin(2πx) + 0.5

Figure 3.5: Numerical solutions of the reaction–diffusion equation for different values of

γ̃, D1, D2, and z0
2(x).

In order to analyze the behavior of the solution for increasing diffusion, i.e. increasing D1 and

D2, in a more general scenario, DIRICHLET boundary conditions are fixed at

z1,0(t) = z1,1(t) = 1.0 (3.64a)

z2,0(t) = z2,1(t) = 0.5 (3.64b)

and initial conditions again are chosen as z0
1(x) ≡ 1.0 as well as z0

2(x) ≡ 0.5. This is visualized

for γ̃ = 5.0 and four different values of D1 = D2 in Figure 3.6. Here, the green dots represent

the boundary values at xs = 0.0 and xf = 1.0. As the figures show, for increasing diffusion, the

solution approaches the line connecting both boundary conditions for t → ∞ meaning that the

reactive term of the model affects the solution to a decreasing degree, whereas the diffusive term

experiences growing importance. This is emphasized by Figure 3.7, where different boundary

and initial conditions are chosen together with large values of D1 = D2 to underline this be-

havior. As can be seen, in each case the solution starting for t = 0 from the red colored initial

condition curve converges again towards the line connecting the boundary values for t → ∞,

hereafter referred to as diffusion line. This scenario shows the behavior of the solution for a
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(c) D1 = D2 = 1.0 · 10−1
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(d) D1 = D2 = 1.0 · 102

Figure 3.6: Numerical solutions of the reaction–diffusion equation for γ̃ = 5.0, z0
1(x) ≡ 1.0,

z0
2(x) ≡ 0.5, and different values of D1, D2.

diffusive term dominating strongly over the reactive one.

For the sake of completeness, the opposite scenario is visualized in Figure 3.8, where the same

initial and boundary conditions are chosen as in Figure 3.7 (time scale of diffusion� time scale

of reaction), but this time the reactive term dominates the diffusive one (time scale of reaction

� time scale of diffusion) which is realized by choosing small values of D1 and D2. As one

can see, the solutions show strong similarity to the pure reaction case for each value of x (in

consideration of fulfillment of the given boundary conditions).

Naturally, it is possible to choose a value of D1 differing from D2 which, however, plays no

essential role within the scope of this work. Nevertheless, this scenario is illustrated in Figure

3.9, where Figures 3.9(a) and (c) represent D1 � D2 and Figures 3.9(b) and (d) D1 � D2

for different initial and boundary conditions. The first case shows how D2 quickly forces the

dynamic onto the plane of constant z2 for each x, where the respective value of z2 is given by

the diffusion line. Based on the relatively small value of D1 there is no remarkable effect by

diffusion regarding z1. In contrast, the second case (D1 � D2) provides similar results for

interchanged roles of z1 and z2 or D1 and D2, respectively.
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, z1,0(t) = 1.0,

z2,0(t) = 0.5, z1,1(t) = 0.0, z2,1(t) = 0.0
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(c) z0
1(x) = 2(x−0.5)2+0.5, z0

2(x) =
7
6
x2− 41

30
x+0.5,

z1,0(t) = z1,1(t) = 1.0, z2,0(t) = 0.5, z2,1(t) = 0.3

0

0.2

0.4

0.6

0.8

1

00.10.20.30.40.50.60.70.80.91

0

0.1

0.2

0.3

0.4

0.5

0.6

x

z1

z2

(d) z0
1(x) = −x+ 1, z0

2(x) = − 40
21
x2 + 20

7
x2 − 37

105
x,

z1,0(t) = 1.0, z2,0(t) = z1,1(t) = 0.0, z2,1(t) = 0.6

Figure 3.7: Numerical solutions of the reaction–diffusion equation for D1 = D2 = 1.0 · 102 for

different initial and boundary conditions. (Time Scale of Diffusion� Time Scale of

Reaction)

Thus, both extreme case scenarios for the reaction–diffusion equation (3.60) are analyzed (at

least by means of the given example): on the one hand the diffusive term dominating the reactive

one (large values ofD) and on the other hand the reactive term dominating the diffusive one, i.e.

diffusion being almost nonexistent (small values of D).

Time Scale of Diffusion � Time Scale of Reaction: The solution converges directly to-

wards the diffusion line, such that effects resulting from the reactive terms are largely

imperceptible.

Time Scale of Diffusion � Time Scale of Reaction: For each x ∈ [xs, xf] the solution

behaves as in the pure reaction case, i.e. converging towards the SIM depending on γ̃ and

finally approaching the chemical equilibrium, under consideration of the given boundary

values.

However, much more interesting is the case where both, reactive and diffusive processes have an

effect on the behavior of the solution such as depicted in Figures 3.6(b) and (c). For discussion,
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x+0.5,

z1,0(t) = z1,1(t) = 1.0, z2,0(t) = 0.5, z2,1(t) = 0.3
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Figure 3.8: Numerical solutions of the reaction–diffusion equation for D1 = D2 = 1.0 · 10−3

for different initial and boundary conditions. (Time Scale of Reaction� Time Scale

of Diffusion)

it is helpful to know about the solution behavior in the two extreme cases mentioned above. For

the sake of simplicity, we restrict to the case where the boundary conditions are given by (3.64)

and corresponding initial conditions by z0
1(x) ≡ 1.0 as well as z0

2(x) ≡ 0.5. Then, the behav-

ior of the solutions resulting from IBVPs with other choices of initial as well as DIRICHLET

boundary conditions can be concluded from similar considerations. Qualitatively, the solution

of the reaction–diffusion equation behaves as if there is a competition between reaction and dif-

fusion which is schematically illustrated in Figure 3.10(a). Here, a vertical sectional plane of

the three-dimensional z2–z1–x–plot is depicted for an arbitrary value of x ∈ (0, 1). The red

cross represents the initial condition as well as the diffusion line evaluated at the respective x

(cf. Figure 3.6(d)). On the other hand, the blue dashed curve represents the solution at x in the

case where diffusion is almost nonexistent such that the dynamics is governed by the reactive

term (cf. Figure 3.6(a)). Solutions of the other scenarios (Diffusion ≈ Reaction) schematically

behave like it is demonstrated in the picture: first, the dynamics start governed by the reactive

term along the blue dashed curve (1). Afterwards, the diffusion pulls the dynamic back along

the direct line towards the diffusion line (2), wherefrom the reaction dynamics towards the SIM
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D1 = 1.0 · 102, D2 = 1.0 · 10−3

Figure 3.9: Numerical solutions of the reaction–diffusion equation for two different initial and

boundary conditions. Figures (a) & (c): D1 � D2, Figures (b) & (d): D1 � D2.

starts again (3). This procedure repeats until diffusion and reaction are ‘in balance’, whereby it

holds that the largerD1 andD2, the nearer is this balance point to the diffusion line. Incidentally,

the red dot represents the chemical equilibrium. Certainly, diffusive and reactive processes do

not occur sequentially as illustrated in Figure 3.10(a) but rather simultaneously, which is why it

has to be interpreted as schematic illustration and not as realistic visualization. Therefore, reac-

tion and diffusion take place in a certain proportion in each time step during time evolution. The

outcome of this interplay between reactive and diffusive processes is than a curve (visualized as

green curve in Figure 3.10(b)) bounded by the SIM (blue dashed) and the direct line connecting

the equilibrium with the diffusion line (red dashed), which can mathematically approximated by

a linear combination of SIM and diffusion line

z2 = θ
z1

z1 + 1
+ (1− θ)z1

2
(3.65)

with θ ∈ [0, 1] in the scenario considered here. For each x ∈ (0, 1) a different θ is possible.

This is clarified by regarding Figure 3.11 where Figure 3.6(c) is visualized as z2–z1–plot. Here,

the red cross represents again the initial value function as well as the diffusion line, whereas the
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(a) Schematic illustration of the interplay between reac-

tion and diffusion.
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(b) Schematic illustration of the resulting solution.

Figure 3.10: Vertical sectional planes of the three-dimensional z2–z1–x–plot for an arbitrary

value of x ∈ (0, 1).

blue curves are solutions of the corresponding IBVP depicted in Figure 3.6(c) for several values

of x. As it can be seen, z2 cannot be approximated by (3.65) for constant θ ∈ [0, 1], which is

why θ has to be a function depending smoothly on x: θ = θ(x).

With this knowledge, it is not difficult to answer the question, if the corresponding FA is suitable
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Figure 3.11: Figure 3.6(c) visualized as z2–z1–plot for several values of x.

or not. Nevertheless, the FA corresponding to the following full reaction–diffusion IBVP

∂tz1(t, x) = D1∂
2
xxz1(t, x)− z1(t, x) in (0, T )× (0, 1)

(3.66a)

∂tz2(t, x) = D2∂
2
xxz2(t, x)− γ̃z2(t, x) +

(γ̃ − 1)z1(t, x) + γ̃(z1(t, x))2

(1 + z1(t, x))2
in (0, T )× (0, 1)

(3.66b)

z1(0, x) = 1.0 in (0, 1)

(3.66c)

z2(0, x) = 0.5 in (0, 1)

(3.66d)

z1(t, 0) = z1(t, 1) = 1.0 in (0, T )

(3.66e)

z2(t, 0) = z2(t, 1) = 0.5 in (0, T )

(3.66f)
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is formulated as

∂tz1(t, x) = D1∂
2
xxz1(t, x)− z1(t, x) in (0, T )× (0, 1) (3.67a)

z1(0, x) = 1.0 in (0, 1) (3.67b)

z1(t, 0) = z1(t, 1) = 1.0 in (0, T ) (3.67c)

z2(t, x) = h(z1(t, x)) =
z1(t, x)

z1(t, x) + 1
in [0, T )× [0, 1] (3.67d)

for Ifixed = {1}, whose solution does not coincide with the solution of (3.66) as it can obviously

be seen in Figure 3.12, where Figures 3.6(c) and 3.11 are supplemented by the corresponding

FA visualized in red. The consequence is that the FA of a reaction–diffusion equation is not
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(a) Figure 3.6(c) supplemented by the corresponding FA

(red).
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(b) Figure 3.11 supplemented by the corresponding FA

(red).

Figure 3.12: Full reaction–diffusion equation (3.66) solution (blue) compared with the corre-

sponding FA (3.67) solution (red).

suitable in general, which completes Table 3.1 to Table 3.2.

This further implies the question, how the FA of the reaction–diffusion equation has to be modi-

fied to achieve a suitable reduced description of the full model equation, which will be discussed

in the subsequent section. But before doing so, we take a brief look at the extended linear model,

i.e. a reaction–diffusion equation in form of (3.60) with S given by the right-hand side of (2.45).
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Table 3.2: List of different full model equations together with its appropriate FAs.

Reaction Reaction–Convection

Full ∂tz = S (z) ∂tz = −v̄∂xz + S (z)

FA ∂tzj = Sj (z) ∂tzj = −ˆ̄v∂xzj + Sj (z)

Suitable 3 3

Reaction–Diffusion Reaction–Convection–Diffusion

Full ∂tz = D∂2
xxz + S (z) ∂tz = −v̄∂xz +D∂2

xxz + S (z)

FA ∂tzj = Dj∂2
xxzj + Sj (z) ∂tzj = −ˆ̄v∂xzj +Dj∂2

xxzj + Sj (z)

Suitable 7 7

for j ∈ Ifixed and zk = h(zj), k /∈ Ifixed, j ∈ Ifixed in the FAs.

Remembering the corresponding SIM in the pure reaction case, the FA is given by

∂tz2(t, x) = D1∂
2
xxz2(t, x) +

γ

2
h (z2(t, x)) + (−1− γ

2
)z2(t, x)

= D1∂
2
xxz2(t, x)− z2(t, x)

(3.68a)

z1(t, x) = h(z2(t, x)) = z2(t, x) (3.68b)

with Ifixed = {2}, which is why the initial and boundary values are fixed to

z1(0, x) = z2(0, x) = 1.0 (3.69a)

z1(t, 0) = z1(t, 1) = z2(t, 0) = z2(t, 1) = 1.0. (3.69b)

For these values, the solution of the full model equation (blue) is compared to the corresponding

FA solution (red) in Figure 3.13, where it can be seen that both solutions coincide, which is

contrarily to the extended DAVIS–SKODJE example analyzed before, but not surprising when

remembering Figure 3.10, since blue dashed curve, red dashed line, and green curve coincide in

the linear case. As a consequence it can be stated, that the FA of a reaction–diffusion equation

with linear reaction term S is suitable whereby it should be mentioned that realistic reactive

source terms are usually highly nonlinear. Figure 3.14 shows solutions of the full extended

linear model (blue) starting from several initial values all converging towards the red colored

reduced model (FA).

3.6 Searching for a Suitable Reduced Reaction–Diffusion

Equation

As demonstrated in the previous section, the FA of a reaction–diffusion equation is not suitable

and thus not appropriate for the usage as reduced reaction–diffusion model. This is why the
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(a)
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Figure 3.13: Full reaction–diffusion equation solution of the extended linear model (blue) com-

pared with the corresponding FA solution (red).

Figure 3.14: Solutions of the full extended linear model (blue) starting from several initial values

all converging towards the red colored solution of the reduced model (FA). Here,

γ = 5.0 and D1 = D2 = 0.1.

FA has to be modified or, more precisely, a modified species reconstruction function h̃ =

h̃ (h(zrpv), zrpv, x) is needed depending on the species reconstruction function resulting from

the pure reaction case as well as zrpv and x such that

zk(t, x) = h̃ (h(zrpv(t, x)), zrpv(t, x), x) , k /∈ Ifixed, j ∈ Ifixed (3.70)

results in a suitable reduced model with regard to the corresponding full reaction–diffusion

model. As in the homogeneous case, h̃app denotes the approximated modified species recon-
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3.6. Searching for a Suitable Reduced Reaction–Diffusion Equation

struction function, since there is no method to find the exact one for the reaction–diffusion case

in general so far. In the following, three approaches for a specific choice of h̃app are listed from

which the latter two have been proposed within the scope of this work.

3.6.1 Close–Parallel Assumption

The close–parallel assumption (CPA) was introduced in [TP02] and improved and developed

by Ren et al. in [RP06, RP07, RPV+07]. It states that the composition in the reduced description

of an inhomogeneous combustion process, which is described in terms of the reduced compo-

sition variables zrpv, is drawn onto another manifold that is close by and similar in structure to

that, i.e. the compositions are assumed to lie on a low-dimensional manifold which is close to

and parallel to the chemistry-based SIM. Thus, these compositions can be expressed by

z(t, x) =

(
zrpv(t, x)

h̃ (h (zrpv(t, x)) , zrpv(t, x), x)

)
=

(
zrpv(t, x)

h (zrpv(t, x)) + δznrpv(t, x)

)
(3.71)

where δznrpv is the departure from the SIM represented by the species reconstruction function

h, i.e. δznrpv = znrpv − h(zrpv). Hence, when the reduced composition variables are used to

represent the reaction–diffusion system, the exact evolution equation for zrpv (3.60a) results in

∂tzrpv(t, x) = Drpv∂
2
xxzrpv(t, x) + Srpv (zrpv(t, x), h (zrpv(t, x)) + δznrpv(t, x)) (3.72)

when using (3.71). The assumption that
(
zrpv znrpv

)>
is close to

(
zrpv h(zrpv)

)>
implies

δznrpv being small and hence, the reactive term on the right-hand side of Equation (3.72) can be

well approximated by the TAYLOR series of first order

Srpv (zrpv, h(zrpv) + δznrpv) ≈ Srpv (zrpv, h(zrpv)) + ∂znrpvSrpv

∣∣∣
znrpv=h(zrpv)

· δznrpv

(3.73)

where ∂znrpvSrpv

∣∣∣
znrpv=h(zrpv)

is themrpv×(m−mrpv) matrix
(
∂zjSi

)
i=1,...,mrpv,j=mrpv+1,...,m

evaluated at znrpv = h(zrpv). Herewith (when assuming equality) the Evolution Equation (3.72)

results in

∂tzrpv = Drpv∂
2
xxzrpv + Srpv (zrpv, h(zrpv)) + ∂znrpvSrpv

∣∣∣
znrpv=h(zrpv)

· δznrpv. (3.74)

The unknown perturbation δznrpv can be obtained by usingN(zrpv), which is anm×(m−mrpv)

orthogonal matrix spanning the normal subspace of the manifold at
(
zrpv h(zrpv)

)>
. Consid-

ering the reaction–diffusion system in the normal subspace, with z =
(
zrpv h(zrpv) + δznrpv

)>
,
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we have

N>(zrpv)

(
∂tzrpv

∂t(h(zrpv) + δznrpv)

)
=N>(zrpv)

(
Drpv∂

2
xxzrpv

Dnrpv∂
2
xx (h(zrpv) + δznrpv)

)

+N>(zrpv)

(
Srpv (zrpv, h(zrpv) + δznrpv)

Snrpv (zrpv, h(zrpv) + δznrpv)

)
.

(3.75)

The CPA amounts to the approximation (based on the assumptions ‘close’ and ‘parallel’ to the

chemistry-based SIM)

N>(zrpv)

(
0

∂tδznrpv

)
≈ 0 (3.76)

which indicates a simplification of Equation (3.75), namely

0 ≈N>(zrpv)

(
Drpv∂

2
xxzrpv

Dnrpv∂
2
xx (h(zrpv) + δznrpv)

)

+N>(zrpv)

(
Srpv (zrpv, h(zrpv) + δznrpv)

Snrpv (zrpv, h(zrpv) + δznrpv)

) (3.77)

since N>(zrpv)
(
∂tzrpv ∂th(zrpv)

)>
is exactly zero. As the terms on the right-hand side of

Equation (3.77) are the components of molecular diffusion and chemical reactions in the normal

subspace, respectively, there is a balance between both of them. Under the assumption that(
zrpv znrpv

)>
is close and parallel to

(
zrpv h(zrpv)

)>
, a further simplification is performed

by TAYLOR approximation

0 ≈N>(zrpv)

(
Drpv∂

2
xxzrpv

Dnrpv∂
2
xx (h(zrpv))

)
+N>(zrpv)

(
Srpv (zrpv, h(zrpv))

Snrpv (zrpv, h(zrpv))

)

+N>(zrpv)

 ∂znrpvSrpv

∣∣∣
znrpv=h(zrpv)

∂znrpvSnrpv

∣∣∣
znrpv=h(zrpv)

 δznrpv

(3.78)

where ∂znrpvSnrpv

∣∣∣
znrpv=h(zrpv)

is defined in accordance to ∂znrpvSrpv as
(
∂zjSi

)
i,j=mrpv+1,...,m

evaluated at znrpv = h(zrpv). The second term on the right-hand side of Equation (3.78) is

equal to zero since the invariance property of the corresponding SIM is required. From this, an

expression for the perturbation δznrpv is achieved by manipulating (3.78) yielding

δznrpv = −

N>
 ∂znrpvSrpv

∣∣∣
znrpv=h(zrpv)

∂znrpvSnrpv

∣∣∣
znrpv=h(zrpv)



−1

·N>
(

Drpv∂
2
xxzrpv

Dnrpv∂
2
xx (h(zrpv))

)
(3.79)
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which in turn can be substituted into (3.74) resulting in an evolution equation for the reduced

composition variable zrpv

∂tzrpv = Drpv∂
2
xxzrpv + Srpv (zrpv, h(zrpv)) +H>Drpv∂

2
xxzrpv (3.80)

with H> ≡ −∂znrpvSrpv

(
N>

(
∂znrpvSrpv

∂znrpvSnrpv

))−1

N>. Compared to the FA (blue), the CPA

provides one extra term (red) that arises from the diffusion–chemistry coupling:

∂tzrpv= Drpv∂
2
xxzrpv + Srpv (zrpv, h(zrpv))+H>Drpv∂

2
xxzrpv (3.81a)

znrpv= h(zrpv)+δznrpv. (3.81b)

For the purpose of illustration, the CPA of the extended DAVIS–SKODJE model is computed. For

Ifixed = {1}, S1 = −z1, S2 = −γ̃z2 +
(γ̃−1)z1+γ̃z2

1
(1+z1)2 , and z2 = h(z1) = z1

z1+1 , the perturbation

δz2 results in (cf. (3.79))

δz2 =−

((
−γ̃ z1

z1+1 +
(γ̃−1)z1+γ̃z2

1
(1+z1)2 z1

)( 0

−γ̃

))−1

·
(
−γ̃ z1

z1+1 +
(γ̃−1)z1+γ̃z2

1
(1+z1)2 z1

) D1∂
2
xxz1

D2∂
2
xx

(
z1
z1+1

)
=− D1∂

2
xxz1

γ̃(1 + z1)2
+
D2∂

2
xx

(
z1
z1+1

)
γ̃

,

(3.82)

wherefrom directly the CPA arises

∂tz1= −z1 +D1∂
2
xxz1+0 (3.83a)

z2=
z1

z1 + 1
− D1∂

2
xxz1

γ̃(1 + z1)2
+
D2∂

2
xx

(
z1
z1+1

)
γ̃︸ ︷︷ ︸

h̃app

. (3.83b)

As can easily be seen, for decreasing values of D1 as well as D2 the CPA and the FA become

increasingly similar confirming the statement from [RP06] that the CPA becomes more and more

suitable for decreasing diffusion. Nevertheless, based on the approximations the CPA makes use

of, h̃app = h + δznrpv does not coincide with the exact h̃ which is why the CPA is no suitable

reduced reaction–diffusion model.

3.6.2 Convex Combination

Another proposal for finding a suitable reduced description has already been motivated in Sec-

tion 3.5. Here, the non RPVs are approximated by a convex combination of the species re-

construction function h resulting from the pure reaction case and the direct line connecting the

113



3. Spatially Inhomogeneous Systems: Inertial Manifold Computation

equilibrium with the diffusion line (depending on x). Furthermore, it is conceivable that the

coefficients θ(x) may also depend on time t, which results in an approximated modified species

reconstruction function given by

h̃app (h(zrpv), zrpv, x) = θ(t, x)h(zrpv) + (1− θ(t, x))d(zrpv, x) (3.84)

with θ(t, x) ∈ [0, 1] and d being the direct line mentioned above (red dashed in Figure 3.10(b)).

In case of the extended DAVIS–SKODJE model with boundary values given by z1(t, 0) =

z1(t, 1) = 1.0 and z2(t, 0) = z2(t, 1) = 0.5, this function d is given by

d(z1, x) =
z1

2
(3.85)

as seen before in Section 3.5. In this context, the determination of θ(t, x) is the most difficult

challenge and will not be part of this work, but in the authors opinion, the correct choice of

θ(t, x) can lead to equality between h̃app given by Equation 3.84 and the exact modified species

reconstruction function h̃ being the consequence that a suitable reduced reaction–diffusion equa-

tion can be identified.

3.6.3 Disturbed Species Reconstruction Function

The second proposal presented novelly in this work is what we call disturbed species recon-
struction function. This function is motivated by Figure 3.10(a) and describes the species

reconstruction function h modified at each point along the SIM by a disturbance into the direc-

tion of the connection to the diffusion line. This is schematically illustrated in Figure 3.15(a),

where the blue dashed curve represents the SIM and the red dashed lines the direct connec-

tion between a point on the SIM and the diffusion line (evaluated at the repective value of x)

represented by the red cross. The green curve visualizes the resulting disturbed species recon-

struction function which is used as approximated modified function h̃app. For reasons of clarifi-

cation, the disturbed species reconstruction function is illustrated again by means of the extended

DAVIS–SKODJE model with boundary values given exemplarily by z1(t, 0) = z1(t, 1) = 1.0 and

z2(t, 0) = z2(t, 1) = 0.5. Afterwards, with this knowledge, this idea can be generalized to other

reaction–diffusion equations and/or boundary values. The vector pointing towards the diffu-

sion line starting from a point on the SIM
(
z1 h(z1) = z1

z1+1

)>
(blue cross in Figure 3.15(b))

is given by θ̃(t, x)
(

1− z1 0.5− z1
z1+1

)>
such that the resulting point

(
znew

1 znew
2

)>
(red

thick cross) lying on the disturbed species reconstruction function is given by(
znew

1

znew
2

)
:=

(
z1

z1
z1+1

)
+ θ̃(t, x)

(
1− z1

0.5− z1
z1+1

)
(3.86)

yielding

znew
2 =

znew
1 − θ̃

znew
1 − 2θ̃ + 1

+ θ̃

(
0.5− znew

1 − θ̃
znew

1 − 2θ̃ + 1

)
. (3.87)
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As a consequence, the disturbed species reconstruction function serving as example for an ap-

proximated modified species reconstruction function results in

h̃app =
z1 − θ̃

z1 − 2θ̃ + 1
+ θ̃

(
0.5− z1 − θ̃

z1 − 2θ̃ + 1

)
. (3.88)

Here as well, the biggest challenge is to determine θ̃(t, x) which is not discussed as part of this

0.0 1.0 

0.0 

0.5 

(a)

0.0 1.0 

0.0 

0.5 

(b)

Figure 3.15: Schematic illustration of the disturbed species reconstruction function.

work. Neverthesless, it is very probable that a correct specification of θ̃ = θ̃(t, x) provides a

suitable reduced reaction–diffusion equation.

3.7 Inertial Manifold Computation

Just as the species reconstruction function h defines a specific manifold, the SIM, the modified

species reconstruction function h̃, which is used as reduced description of inhomogeneous com-

bustion processes comprising an interplay between reactive and diffusive processes, defines a

specific manifold as well—the inertial manifold (IM). Especially in the 1980s, IMs have been

introduced and analyzed in relation to the study of the long-term behavior of solutions of dis-

sipative evolution problems (see e.g. [FST88, MS88, Tem90]). Most of the dynamics for the

system takes place on an IM, which is why a considerable simplification in the study of the

dynamics can be achieved. Thus, the reduced description of the full model equation—the iner-
tial system—reproduces most of the dynamical properties of the corresponding initial system.

Furthermore, if an IM exists, it is a finite dimensional (even if the respective initial system is

infinite dimensional), invariant, and asymptotically stable manifold [Tem90]. Statements about
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existence of IMs can be found in [FST88, MS88], where the most restrictive requirement for

an IM to exist is the spectral gap condition (see e.g. [MS88]). Furthermore, this spectral gap

condition applied to a reaction–diffusion system of the form

∂tz(t, x) = D∂2
xxz(t, x) + S(z(t, x)), x ∈ R (3.89)

yields the existence of an IM for every D > 0 with DIRICHLET or NEUMANN boundary condi-

tions given on the interval [0, 1] (cf. [FST88, MS88]). Consequently, for all reaction–diffusion

systems regarded within this work the existence of an IM is ensured.

Up to now, one way towards the reduction of an inhomogeneous reaction–convection–diffusion

equation model is known as part of this work so far, particularly the one where the full sys-

tem (= initial system) consisting of reaction processes as well as physical transport in form of

convection and diffusion is simplified to a homogeneous pure reaction model—the full reaction

system comprising slow and fast modes. Afterwards, a SIM is approximated comprising the

slow modes of the system yielding the reduced reaction system. This SIM approximation is

discussed extensively in Chapter 2 and is already well understood. In contrast, the way to get

from the reduced reaction system to the reduced system (= inertial system) remains widely un-

explored, whereas this work presents novel ideas on the basis of extensive research concerning

this aspect, which is demonstrated as part of Chapter 3 up to here. This procedure is visualized

in Figure 3.16 by the blue lower half of the diagram. More precisely, the initial system is given

by a reaction–convection–diffusion equation of the following form

∂tz(t, x) = −v̄∂xz(t, x) +D∂2
xxz(t, x) + S(z(t, x)) (3.90)

wherefrom the full reaction system can easily be derived by omitting both the convection as well

as the diffusion term yielding the spatially homogeneous system of ODEs

∂tz(t, x) = S(z(t, x)). (3.91)

This system in turn is reduced via computation of a SIM represented by a species reconstruction

function h which results in the reduced reaction system

∂tzrpv(t, x) = S(z(t, x)) (3.92)

znrpv(t, x) = h(zrpv(t, x)). (3.93)

After this, the challenge is to find a function h̃ = h̃(h(zrpv), zrpv, x) that represents the IM

leading finally to the inertial system

∂tzrpv(t, x) = −v̄∂xzrpv(t, x) +D∂2
xxzrpv(t, x) + S(z(t, x)) (3.94)

znrpv(t, x) = h̃ (h(zrpv), zrpv, x) . (3.95)

The question that arises here is:
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Full System

= Initial System

Full Reaction System Reduced Reaction System

Reduced System

= Inertial System

Reduction
via SIM appr.

Reduction
via IM appr.

Figure 3.16: Schematic illustration of two ways of model reduction: SIM approximation and IM

approximation.

Is it necessary to take this indirect route (initial system → full reaction system →
reduced reaction system → inertial system) or is it possible to take the direct one

(initial system→ inertial system) via approximation of an IM?

(cf. Figure 3.16)

The research concerning this issue (i.e. how to approximate an IM directly) is still in its initial

phase, which is why there are just a few approaches dealing with this problem. The reason for

this is not only based on the more difficult complexity concerned with system of PDEs in contrast

to system of ODEs, but also that there is no test model available so far (to the author’s knowl-

edge) where the IM is analytically known. As a consequence, it is hardly possible to estimate the

accuracy of the result of the respective approach, i.e. of the approximated IM. Nevertheless, two

approaches for IM approximation that already exist are presented in the following, whereas the

third one, which is based on the boundary–value–concept presented in 2.6, is novelly presented

as part of this work.
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3.7.1 Reaction Diffusion Manifold (REDIM) Method

The effect, that applying the same transport operator for a reduced model as for the correspond-

ing full one without a proper projection, while the source term is replaced by a reduced chemistry

model, can lead to inaccurate results, was also recognized by MAAS et al. in 2007. This prob-

lem is exposed in [BM07b], where the method of reaction diffusion manifolds (REDIM) for

automatic reduction of chemical kinetic models depending on transport properties is presented

as suggested solution approach. This method is supposed to allow to incorporate the effect of

coupling of reaction and diffusion processes into the computation of a manifold-based reduced

model. Based on a general reaction–diffusion equation

∂tz = D∂2
xxz + S(z) (3.96)

the system solution is supposed to be on a manifold defined by an explicit function z(zrpv)

M = {z | z = z(zrpv), z : Rmrpv → Rm} (3.97)

where zrpv parameterizes the manifold. Here, M is defined as an invariant system manifold if at

any point z ∈ M the vector field of (3.96) defined by its right-hand side belongs to the tangent

space TzM of M . Consequently, it holds that16

(
z⊥zrpv

(zrpv)
)>
·
(
D∂2

xxz + S(z)
)
≡ 0 (3.98)

with z⊥zrpv
being the normal space to the manifold:

(
z⊥zrpv

)>
· zzrpv ≡ 0. In terms of a projection

operator onto the normal space P(TM)⊥ = I − zzrpvz
+
zrpv

of M this condition becomes(
I − zzrpvz

+
zrpv

)
·
(
D∂2

xxz + S(z)
)

= 0, (3.99)

where z+
zrpv

is the MOORE–PENROSE pseudo inverse of zzrpv (see [GL89]) defined for a regular

matrix z>zrpv
· zzrpv by

z+
zrpv

=
(
z>zrpv

· zzrpv

)−1
· z>zrpv

. (3.100)

This equation system is a key relation with respect to the REDIM method and it is used as

a basis to find an approximation for the reduced manifold. In order to solve this manifold

equation (3.99) a reformulation in terms of a multi-dimensional parabolic system of PDEs for

z = z(zrpv, t) is suggested

∂tz(zrpv) =
(
I − zzrpv(zrpv)z+

zrpv
(zrpv)

)
·
(
D∂2

xxz(zrpv) + S(z(zrpv))
)

(3.101)

16The notation zzrpv represents the JACOBIAN and thus, it is defined by zzrpv :=
(
∂zrpvj

zi
)
i=1,...,m; j=1,...,mrpv

.
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such that the stationary solution z(zrpv,∞) defines the desired manifold. This system in turn is

integrated starting from an initial guess for the invariant manifold given by the extended ILDM

approach [BM07a] until convergence of the solution. As a consequence, the system dynamics

is completely confined on the manifold. It is important to note that the assumption z(t, x) =

z(zrpv(t, x)) is not generally valid and used as an approximation. A further problem results from

the dependence of the transport partD∂2
xxz(zrpv) on the gradient of the manifold parameterizing

parameter zrpv (see e.g. [BM07b]). To avoid this problem, the following modification of the

evolution equation (3.101) is suggested:

∂tz(zrpv) =
(
I − zzrpvz

+
zrpv

)
·
(
D‖z>zrpv

∂xz‖2
1

mrpv
Tr(A) + S(z)

)
(3.102)

with

(Tr(A))i =
∑
j

zizrpvjzrpvj

(
z>zrpvj

zzrpvj

)−2
, z>zrpvj

zzrpvj
=
∑
k

(
∂zrpvj

zk

)2
. (3.103)

Accordingly, this modified invariance equation (3.102) defines the REDIM and contains the

impact of the diffusion through the modified diffusion term and the gradient ∂xzrpv, which

is now approximated by the norm of the original system gradient. In conclusion, it can be

stated, that if the norm of the gradient is roughly known, then it is sufficient to approximate

the reduced manifold with an acceptable level of accuracy. Furthermore, an application of the

REDIM method to the extended DAVIS–SKODJE model can also be found in [BM07b].

3.7.2 Saddle Point Method (SPM) Extended to Reaction–Diffusion Systems

In [MP13], the SPM, already introduced in Section 2.1, is extended to reaction–diffusion equa-

tions. To briefly review the SPM applied to homogeneous systems: branches of a one-dimensional

SIM are identified as heteroclinic orbits connecting equilibria. After identifying all equilibria

of the system, the heteroclinic orbit that connects a (generally nonphysical) saddle equilibrium

with an unstable manifold (corresponding to a positive eigenvalue of its JACOBIAN) with the

(physical) sink equilibrium represents a branch of a SIM. A perturbation from the saddle along

its unstable eigenspace determines the initial value for the appropriate trajectory. This technique

is extended to reaction–diffusion equations by identifying steady state solutions of the full sys-

tem and connecting analogous orbits in the GALERKIN–projected space. More precisely, the full

system including both a reaction as well as a diffusion term is transferred into a finite system of

ODEs by applying the method of weighted residuals in form of a GALERKIN method. Thus, so-

lutions of the full system dynamics are projected onto an approximate inertial manifold (AIM)
(see [Tem97]). The low-dimensional system of ODEs resulting from the GALERKIN projection

possesses equilibria that correspond to steady state solutions of the full reaction–diffusion equa-

tion system. Subsequently, a one-dimensional manifold can be constructed by using heteroclinic
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orbits connecting a non-physical steady state with a physical equilibrium. For more detailed in-

formation see [Men12, MP13].

3.7.3 Boundary–Value–Concept for Approximating Inertial Manifolds

As mentioned before, an IM has the property of being invariant and asymptotically stable. As

in the spatially homogeneous case, these properties can be exploited in order to approximate an

IM by using the boundary–value–concept (cf. 2.6.3) transferred to reaction–diffusion equation

systems. For a general IBVP of the form

∂tz(t, x) = D∂2
xxz(t, x) + S(z(t, x)) in (0, T )× (xs, xf), 0 < T <∞ (3.104a)

z(0, x) = z0(x) in (xs, xf) (3.104b)

z(t, xs) = zxs(t) in (0, T ) (3.104c)

z(t, xf) = zxf(t) in (0, T ) (3.104d)

the IM computation approach based on this boundary–value–concept is formulated novelly as

part of this work as

∂tz(t, x) = D∂2
xxz(t, x) + S(z(t, x)) in (0, T )× (xs, xf), 0 < T <∞ (3.105a)

zrpv(0, x) = z0
rpv(x) in (xs, xf) (3.105b)

znrpv(t0, x) = zt0nrpv(x) in (xs, xf) (3.105c)

z(t, xs) = zxs(t) in (0, T ) (3.105d)

z(t, xf) = zxf(t) in (0, T ) (3.105e)

where global asymptotical stability is assumed and t0 < 0 in the reverse mode formulation.

Using similar arguments as in the homogeneous case, an IM should be identified exactly for

t0 → −∞ regardless of the choice of zt0nrpv(x). Moreover, for a specific value of x the method

coincides with the boundary–value–concept applied to homogeneous systems with the differ-

ence that no SIM is computed, but a part of the IM, which is drifted away from the SIM caused

by the present diffusion effect. Therefore, it is possible to approximate an IM by discretizing

System (3.105) in space and afterwards applying the Matlabr BVP solver bvp4c.

Applied to the DAVIS–SKODJE model, i.e. S =
(
S1 S2

)>
=
(
−z1 −γ̃z2 +

(γ̃−1)z1+γ̃z2
1

(1+z1)2

)>
together with zrpv = z1 and thus, znrpv = z2, xs = 0, xf = 1, zxs(t) = zxf(t) =

(
1.0 0.5

)>
,
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z0
1(x) = 0.8, and zt02 (x) = 0.0, System (3.105) reads

∂tz1(t, x) = D1∂
2
xxz1(t, x)− z1(t, x) (3.106a)

∂tz2(t, x) = D2∂
2
xxz2(t, x)− γ̃z2(t, x) +

(γ̃ − 1)z1(t, x) + γ̃(z1(t, x))2

(1 + z1(t, x))2
(3.106b)

z1(0, x) = 0.8 (3.106c)

z2(t0, x) = 0.0 (3.106d)

z1(t, 0) = 1.0 (3.106e)

z2(t, 0) = 0.5 (3.106f)

z1(t, 1) = 1.0 (3.106g)

z2(t, 1) = 0.5. (3.106h)

Using a uniform discretization grid of the space interval [0, 1] as depicted in the following

x0 = 0.0 xn+1 = 1.0x1 x2 xn−1 xn

h h h h

with a grid width of h = 1
n+1 , the finite difference method approximates the diffusion term of

(3.106a), (3.106b) by

∂2
xxzj(t, x) ≈ zj(t, x− h)− 2zj(t, x) + zj(t, x+ h)

h2
, j = 1, 2. (3.107)

Thus, System (3.106) is approximated by

∂tz
1
j (t)

∂tz
2
j (t)
...

∂tz
n−1
j (t)

∂tz
n
j (t)


=
Dj
h2



−2 1 0 . . . 0

1 −2 1
. . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . 1

0 · · · 0 1 −2





z1
j (t)

z2
j (t)
...

zn−1
j (t)

znj (t)


+



Sj +
Dj
h2 z

0
j (t)

Sj
...

Sj

Sj +
Dj
h2 z

n+1
j (t)


(3.108a)

z1
1(0)

...

z2
1(0)

 =


0.8

...

0.8

 (3.108b)


z1

2(t0)
...

zn2 (t0)

 =


0.0

...

0.0

 (3.108c)
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where j = 1, 2 and zij(t) := zj(t, xi), i = 1, . . . , n. Accordingly, this BVP can be solved using

bvp4c, where the results are presented in the following for n = 10. For an insignificant role of

diffusion, i.e. for small values of D1 and D2 such as D1 = D2 = 1.0 · 10−3, the IM should be

approximated well by the FA (z2 = z1
z1+1 ) for t0 → −∞, which is confirmed by the computed

values

z1
2(0)

z2
2(0)

...

z9
2(0)

z10
2 (0)


=



0.2741

0.2718
...

0.2718

0.2741


(3.109a)



z1
2(0)

z2
2(0)

...

z9
2(0)

z10
2 (0)


=



0.4444

0.4444
...

0.4444

0.4444


(3.109b)

for γ̃ = 10.0, where (3.109a) results from (3.108) with t0 = −0.1 and (3.109b) from (3.108)

with t0 = −1.0. Consequently, even for a small absolute value of t0 = −1.0 the IM is approx-

imated very well. For a more significant role of diffusion, i.e. D1 = D2 = 1.0 · 10−2, the BVP

(3.108) results in values



z1
2(0)

z2
2(0)

...

z9
2(0)

z10
2 (0)


=



0.4440

0.4444
...

0.4444

0.4440


(3.110)

for t0 = −1.0 and γ̃ = 10.0. Here, the deviation of the IM from the FA becomes apparent,

which confirms the studies from Section 3.5.

Obviously, this is far from being a proof for the identification of IMs via (3.105), but based on

the fundamental idea and the very simple example demonstrated above it should be considered

to continue this approach. Numerical improvements as well as comparisons of the results with

other IM approximation methods, inter alia, belong to future research belonging to this IM

computation method (3.105) based on the boundary–value–concept.
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3.8 Neumann Boundary Conditions

Finally, the behavior of solutions to IBVPs of the reaction–diffusion equation with NEUMANN

boundary values is analyzed, where we restrict to zero NEUMANN boundary conditions, i.e. the

problem is formulated as

∂tz(t, x) = D∂2
xxz(t, x) + S(z(t, x)) (3.111a)

z(0, x) = z0(x) (3.111b)

∂xz(t, xs) = 0 (3.111c)

∂xz(t, xf) = 0. (3.111d)

Once again, for demonstration purposes, the extended DAVIS–SKODJE model is used in the

following form

∂tz1(t, x) = D1∂
2
xxz1(t, x)− z1(t, x) (3.112a)

∂tz2(t, x) = D2∂
2
xxz2(t, x)− γ̃z2(t, x) +

(γ̃ − 1)z1(t, x) + γ̃(z1(t, x))2

(1 + z1(t, x))2
(3.112b)

z1(0, x) = z0
1(x) = 1 (3.112c)

z2(0, x) = z0
2(x) (3.112d)

∂xz1(t, 0) = 0 (3.112e)

∂xz1(t, 1) = 0 (3.112f)

∂xz2(t, 0) = 0 (3.112g)

∂xz2(t, 1) = 0 (3.112h)

where γ̃, D1, D2, and z0
2(x) have yet to be determined. As a first choice of the initial function,

z0
2(x) = 0.5 is chosen, where the solution plot resulting from the Matlabr program pdepe is

depicted in Figure 3.17, where the red line visualizes the initial function. What is remarkable

here is the absolute coincidence with the corresponding FA for all admissible choices of γ̃,

D1, and D2. The reason for this can be explained by analyzing other choices of z0
2(x). For this

purpose, another initial function is used in Figure 3.18(a)–(c), namely z0
2(x) = x2−0.5x4. Here,

γ̃ is fixed as γ̃ = 5.0 and the diffusion coefficients vary between D1 = D2 = 1.0 · 10−3 and

D1 = D2 = 1.0 · 101, such that diffusion becomes more and more dominating over the reaction

term. As can be seen, the diffusion forces the dynamics to a homogenization over space while

the reaction takes part. Especially in Figure 3.18(c), where the diffusion dominates significantly

the reaction term, this can be observed, since the diffusion at first equalizes z2 over x before

the reaction shows effects as in the homogeneous case. This homogenization line, i.e. the line

that describes the final state for t → ∞ in absence of any reaction term, is an average value of

the initial function. These statements are illustrated by Figure 3.18(d) where the initial function
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Figure 3.17: Solution of IBVP (3.112) for z0
2(x) = 0.5.
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(a) Solution of IBVP (3.112) for z0
2(x) = x2 − 0.5x4

together with γ̃ = 5.0 and D1 = D2 = 1.0 · 10−3.
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(b) Solution of IBVP (3.112) for z0
2(x) = x2 − 0.5x4

together with γ̃ = 5.0 and D1 = D2 = 1.0 · 10−1.
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(c) Solution of IBVP (3.112) for z0
2(x) = x2 − 0.5x4

together with γ̃ = 5.0 and D1 = D2 = 1.0 · 101.
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(d) Solution of IBVP (3.112) for z0
1(x) = 2x2 − x4 and

z0
2(x) = x2 − 0.5x4 together with γ̃ = 5.0 and D1 =

D2 = 1.0 · 101.

Figure 3.18: Solution of IBVP (3.112) for different values of D1 = D2. In Figure 3.18(d), the

initial function z0
1(x) is changed from z0

1(x) = 1.0 to z0
1(x) = 2x2 − x4.

z0
1(x) is changed from z0

1(x) = 1.0 to z0
1(x) = 2x2 − x4. Here, the homogenization takes place

not only with respect to z2, but also with respect to z1. Furthermore, the homogenization line is

highlighted as green line.
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Summarizing the above, it can be stated, that if the diffusion is slower than the fast modes of

the reaction, the diffusion does not affect the behavior of the solution significantly, since the

fast reaction modes have already ensured the homogenization along x. If the diffusion is faster

than the slow modes of the reactive term, the diffusion supports the homogenization which takes

place anyway due to the fast reaction modes converging towards the SIM. Consequently, it can

be stated, that the FA is an appropriate reduced description of a reaction–diffusion equation with

zero NEUMANN boundary values, although it is not suitable by definition.

3.9 Interim Summary

In this chapter, fundamental studies concerning the reduction of reaction–convection–diffusion

equations are performed. It turned out, that convection processes are without influence to the

reduced chemistry-based reaction model being the consequence that it is sufficient to analyze

the behavior of solutions to reaction–diffusion models. However, this case is not trivial. In

this context, the fundamental behavior of solutions to reaction–diffusion models is analyzed.

Furthermore, two ways of obtaining a reduced model of a combustion process are presented:

on the one hand, the coupling of diffusion with the reduced reaction model and on the other

hand, the direct reduction of the underlying PDE model, which is directly related to the problem

of approximating inertial manifolds (IMs). For both ways, possible solution approaches are

presented, whereby just fundamental ideas are proposed. Obviously, significantly more research

is required for application to realistic combustion scenarios, but nevertheless, foundations for

this have already been laid within this dissertation. This is particularly important since the

future trend in reducing combustion processes is towards reducing the initial system directly, i.e.

without regarding the chemical reaction part solely.
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This dissertation deals with fundamental concepts concerning the reduction of multiscale com-

bustion models. The reduction itself finds its motivation in the fact, that simulation of full

model equations poses challenges due to complexity caused by an interplay between convective

and diffusive species transport and chemical reaction processes and large dimension. Addition-

ally, multiple time scales within the chemical reaction processes with time scales ranging from

nanoseconds to seconds inducing high stiffness of the kinetic model equations make it even

worse. Accordingly, model reduction methods aim at a lower computational complexity in the

simulation of chemical combustion processes, where the reduced model should contain the most

important dynamic information given by the long-term behavior and thus by the slow modes

of the underlying process. Usually, there are two ways of how to obtain a reduced combustion

model: on the one hand, the most common way, the reduction of the pure chemistry reaction

term via approximation of slow invariant manifolds (SIMs) (1b). In this context, the reaction–

transport coupling is considered afterwards (1c). On the other hand, quite unexplored up to now,

the direct reduction of the full reaction–transport model via approximation of so-called inertial
manifolds (IM) (2). These two ways for model reduction in chemical combustion processes are

schematically illustrated in Figure 3.19.

Combustion Model

Reduced Combustion Model Reduced Reaction Model

Reaction Model

2

1c

1a

1b

Figure 3.19: Schematic illustration of two possibilities for model reduction applied to a combus-

tion model.

The main results of this thesis refer to the reduction of spatially homogeneous chemical reaction

processes by approximating SIMs, for which there exists a large variety of approaches with little

or no obvious relation to each other concerning their way of proceeding. Within this work,

we identify two basic and fundamental concepts underlying, combining, and collecting a large
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percentage of these approaches for model reduction via SIM computation:

• the derivative–of–the–state–vector–concept and

• the boundary–value–concept.

The former is based on the time derivative of the vector containing the concentrations of the

chemical species participating in the reaction process, where it holds that an increasing deriva-

tive order increases the accuracy of the SIM computation, such that an exact identification is

obtained in the limit, i.e. for an infinite derivative order. On the other hand, the boundary–value–

concept is based on a two-point boundary value problem formulation where it holds that an

increasing time interval between the two boundary values ensures an improvement of the SIM

approximation. Once again, the error of accuracy converges to zero for an infinite time interval

size. Thus, both concepts provide an exact identification of SIMs, at least by using limiting

arguments. Furthermore, we succeeded to unite both concepts in condensed form in one novel

approach, having the advantage over other approaches that two parameters are provided that can

be used independently to improve the accuracy of the reduced reaction model—theoretically

seen to any level of accuracy. However, practical applications show numerical difficulties by

choosing the derivative order higher than three as well as choosing an arbitrary large interval,

which is based on additional physical constraints entering the SIM computation approach for

chemical reaction kinetics. For this purpose, this dissertation provides a procedure, how to ob-

tain the maximum feasible interval size and thus, the best possible approximation of the SIM

within the above framework. Furthermore, this approach is considered from a different point

of view, namely in the light of optimal boundary control. This viewpoint via introduction of a

HAMILTONIAN function related to conservation laws has the potential to establish relations to

powerful concepts from dynamical systems theory that might yield more profound insight into

the model reduction concept in terms of SIM characterization and identification.

In the second part of this dissertation, spatially inhomogeneous systems (PDE models) are ana-

lyzed, i.e. model equations that involve transport processes in form of diffusive and convective

mass transfer in addition to the chemical reaction part. In this context, we confirmed, that con-

vective processes have no remarkable influence concerning the behavior of reaction processes,

being the consequence that it is sufficient to focus on systems involving just reaction and dif-

fusion processes. The behavior of solutions to those reaction–diffusion equations is extensively

investigated by means of a simple nonlinear test example. Based on these investigations, sug-

gestions are provided how to couple a reduced reaction model with diffusive processes (1c) as

well as how to reduce the underlying combustion model at once (2), i.e. without isolating the re-

action processes at first. As regards the first issue, two proposals are newly presented: one based

on a convex combination of the diffusive line and the function representing the reduced reac-
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tion model, the other is denoted by disturbed species reconstruction function and describes

the function representing the reduced reaction model modified at each point along the SIM by a

disturbance into the direction of direct connection of the diffusion line. Accordingly, our sugges-

tion for the direct reduction of the combustion model (i.e. 2 in Figure 3.19) is, roughly speaking,

a generalization of the boundary–value–concept to reaction–diffusion equations providing—at

least in the authors opinion—a highly promising approach for the computation of IMs and thus,

model reduction of reaction–diffusion models.

Summarizing the above, it can be confidently stated that the new insights associated with this

dissertation provide a significant progress in the context of the study of fundamental concepts

for model reduction in multiscale combustion processes.
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oder inhaltlich übernommenen Stellen als solche kenntlich gemacht habe. Ich erkläre außer-
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ähnlicher Form in einem anderen Promotionsverfahren vorgelegt wurde. Ich versichere ferner

die Richtigkeit der im Lebenslauf gemachten Angaben.

Ulm, den 07.12.2015

(Unterschrift)


	Introduction
	Analytical Basics
	Theory of Dynamical Systems and Systems of Ordinary Differential Equations
	Theory of Singularly Perturbed Systems
	Species Reconstruction
	Theory of Optimization Problems

	Spatially Homogeneous Systems: Slow Invariant Manifold Computation
	Methods for Slow Invariant Manifold Computation: Historical Review
	Quasi–Steady–State Assumption (QSSA)
	Partial Equilibrium Assumption (PEA)
	Intrinsic Low Dimensional Manifold (ILDM)
	Saddle Point Method (SPM)
	Trajectory Based Optimization Approach (TBOA)
	Zero–Derivative Principle (ZDP)
	Invariant Constrained Equilibrium Edge Preimage Curves (ICE-PIC)
	Functional Truncation Equation (FET)
	Stretching–Based Diagnostics (SBD)
	Flow Curvature Method (FCM)
	Interim Summary

	Trajectory Based Optimization Approach
	Two Simple Test Models
	Linear Model
	Davis–Skodje Model

	Error of Accuracy
	Consistency
	Symmetry

	Selection of Reaction Progress Variables
	A Multitude of Slow Invariant Manifold Computation Methods—No Common Denominator?
	Derivative–of–the–State–Vector–Concept for SIM Computation
	Theory of Two-Point Boundary Value Problems
	Boundary–Value–Concept for SIM Computation
	Two Concepts—One Approach
	Interim Summary

	Choosing t0 as Small as Possible
	Reverse TBOA in the Light of Optimal Boundary Control
	Theory of Optimal Control Problems

	Further Ideas Concerning the Search for an Exact SIM Identification
	Hamilton's Principle


	Spatially Inhomogeneous Systems: Inertial Manifold Computation 
	Modeling of Reaction–Convection–Diffusion Processes
	Modeling of Convection Processes
	Modeling of Diffusion Processes
	Reaction / Convection / Diffusion

	Theory of Systems of Partial Differential Equations
	Systems of Partial Differential Equations of Order One
	Systems of Partial Differential Equations of Order Two

	First Approximation
	Coupling: Reduced Reaction and Convection
	Coupling: Reduced Reaction and Diffusion
	Searching for a Suitable Reduced Reaction–Diffusion Equation
	Close–Parallel Assumption
	Convex Combination
	Disturbed Species Reconstruction Function

	Inertial Manifold Computation
	Reaction Diffusion Manifold (REDIM) Method
	Saddle Point Method (SPM) Extended to Reaction–Diffusion Systems
	Boundary–Value–Concept for Approximating Inertial Manifolds

	Neumann Boundary Conditions
	Interim Summary

	Summary and Conclusion
	Bibliography
	Curriculum Vitae
	Erklärung

